Antiviral Drugs (2024)

1. De Clercq E. Antiviral drugs in current clinical use. J. Clin. Virol. 2004;30(2):115–133. [PubMed] [Google Scholar]

2. De Clercq E. Antiviral drug discovery and development: where chemistry meets with biomedicine. Antiviral Res. 2005;67(2):56–75. [PubMed] [Google Scholar]

3. Balfour H.H., Jr. Antiviral drugs. N. Engl. J. Med. 1999;340(16):1255–1268. [PubMed] [Google Scholar]

4. Bonhoeffer S., May R.M., Shaw G.M., Nowak M.A. Virus dynamics and drug therapy. Proc. Natl. Acad. Sci. U. S. A. 1997;94(13):6971–6976. [PMC free article] [PubMed] [Google Scholar]

5. De Clercq E. Antiviral agents active against influenza A viruses. Nat. Rev. Drug Discovery. 2006;5(12):1015–1025. [PMC free article] [PubMed] [Google Scholar]

6. Boltz D.A., Aldridge J.R., Jr., Webster R.G., Govorkova E.A. Drugs in development for influenza. Drugs. 2010;70(11):1349–1362. [PMC free article] [PubMed] [Google Scholar]

7. Biron K.K. Antiviral drugs for cytomegalovirus diseases. Antiviral Res. 2006;71(2-3):154–163. [PubMed] [Google Scholar]

8. Coen D.M., Schaffer P.A. Antiherpesvirus drugs: a promising spectrum of new drugs and drug targets. Nat. Rev. Drug Discovery. 2003;2(4):278–288. [PubMed] [Google Scholar]

9. Arora A., Mendoza N., Tyring S.K. Antiviral market overview. In: Gad S.C., editor. Development of Therapeutic Agents Handbook. Wiley; 2012. pp. 127–143. [Google Scholar]

10. De Clercq E. Antivirals: past, present and future. Biochem. Pharmacol. (Amsterdam, Neth.) 2013;85(6):727–744. [PubMed] [Google Scholar]

11. De Clercq E. Antiviral drugs. In: Krogsgaard-Larsen P., Stroemgaard K., Madsen U., editors. Textbook of Drug Design and Discovery. 4th ed. CRC Press; 2010. pp. 393–417. [Google Scholar]

12. De Clercq E. Highlights in the discovery of antiviral drugs: a personal retrospective. J. Med. Chem. 2010;53(4):1438–1450. [PubMed] [Google Scholar]

13. De Clercq E. The discovery of antiviral agents: ten different compounds, ten different stories. Med. Res. Rev. 2008;28(6):929–953. [PubMed] [Google Scholar]

14. De Clercq E. Emerging antiviral drugs. Expert Opin. Emerg. Drugs. 2008;13(3):393–416. [PubMed] [Google Scholar]

15. De Clercq E. Antivirals: current state of the art. Future Virol. 2008;3(4):393–405. [Google Scholar]

16. De Clercq E. Status presens of antiviral drugs and strategies: part I: RNA viruses and retroviruses. Adv. Antiviral Drug Des. 2007;5:1–58. [PMC free article] [PubMed] [Google Scholar]

17. De Clercq E. Status presens of antiviral drugs and strategies: part II: RNA viruses (except retroviruses) Adv. Antiviral Drug Des. 2007;5:59–112. [PMC free article] [PubMed] [Google Scholar]

18. De Clercq E., Holy A. Case history: acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat. Rev. Drug Discovery. 2005;4(11):928–940. [PubMed] [Google Scholar]

19. De Clercq E. Recent highlights in the development of new antiviral drugs. Curr. Opin. Microbiol. 2005;8(5):552–560. [PMC free article] [PubMed] [Google Scholar]

20. De Clercq E. Strategies in the design of antiviral drugs. Nat. Rev. Drug Discovery. 2002;1(1):13–25. [PubMed] [Google Scholar]

21. De Clercq E. Antiviral drugs: current state of the art. J. Clin. Virol. 2001;22(1):73–89. [PubMed] [Google Scholar]

22. De Clercq E. Dancing with chemical formulae of antivirals: a personal account. Biochem. Pharmacol. (Amsterdam, Neth.) 2013;86(6):711–725. [PubMed] [Google Scholar]

23. De Clercq E. Dancing with chemical formulae of antivirals: a panoramic view (Part 2) Biochem. Pharmacol. (Amsterdam, Neth.) 2013;86(10):1397–1410. [PubMed] [Google Scholar]

24. De Clercq E. The design of drugs for HIV and HCV. Nat. Rev. Drug Discovery. 2007;6(12):1001–1018. [PubMed] [Google Scholar]

25. Burke J.D., Fish E.N. Antiviral strategies: the present and beyond. Curr. Mol. Pharmacol. 2009;2(1):32–39. [PubMed] [Google Scholar]

26. Meanwell N.A., Kadow J.F., Scola P.M. Antiviral agents. Annu. Rep. Med. Chem. 2002;37:133–147. [Google Scholar]

27. Eigen M. Error catastrophe and antiviral strategy. Proc. Natl. Acad. Sci. U. S. A. 2002;99(21):13374–13376. [PMC free article] [PubMed] [Google Scholar]

28. Zhang Z., Wang H., Du L.-Y., Chen K.-B., Xiao S.-L., Yu F., Zhang L.-H., Zhou D.-M. Discovery and development of antiviral drugs. J. Chin. Pharm. Sci. 2010;19(6):409–422. [Google Scholar]

29. Lou Z., Sun Y., Rao Z. Current progress in antiviral strategies. Trends Pharmacol. Sci. 2014;35(2):86–102. [PMC free article] [PubMed] [Google Scholar]

30. Jones P.S. Strategies for antiviral drug discovery. Antiviral Chem. Chemother. 1998;9(4):283–302. [PubMed] [Google Scholar]

31. Tyring S.K. General (non-antiretroviral) antiviral drugs. Infect. Dis. Ther. 2005;37:123–289. [Google Scholar]

32. He H. Vaccines and antiviral agents. In: Romanowski V., editor. Current Issues in Molecular Virology: Viral Genetics and Biotechnological Applications. InTech; 2013. pp. 239–250. [Google Scholar]

33. Arbuthnot P., editor. Antiviral Drugs: Aspects of Clinical Use and Recent Advances. InTech; 2012. [Google Scholar]

34. Antonelli G., Turriziani O. Antiviral therapy: old and current issues. Int. J. Antimicrob. Agents. 2012;40(2):95–102. [PubMed] [Google Scholar]

35. Kazmierski W.M., editor. Antiviral Drugs: From Basic Discovery Through Clinical Trials. Wiley; 2011. [Google Scholar]

36. Chen T.-C., Weng K.-F., Chang S.-C., Lin J.-Y., Huang P.-N., Shih S.-R. Development of antiviral agents for enteroviruses. J. Antimicrob. Chemother. 2008;62(6):1169–1173. [PubMed] [Google Scholar]

37. Magri A., Bocchetta S., Burlone M.E., Minisini R., Pirisi M. Recent advances in HCV entry. Future Virol. 2014;9(2):189–205. [Google Scholar]

38. Hazuda D.J., Burroughs M., Howe A.Y.M., Wahl J., Venkatraman S. Development of boceprevir: a first-in-class direct antiviral treatment for chronic hepatitis C infection. Ann. N. Y. Acad. Sci. 2013;1291:69–76. [PubMed] [Google Scholar]

39. Masgala A., Nikolopoulos G., Tsiodras S., Bonovas S., Sitaras N.M. Antiviral drugs in the prophylaxis of HBV infection. Curr. Med. Chem. 2012;19(35):5940–5946. [PubMed] [Google Scholar]

40. Mlynarczyk-Bonikowska B., Majewska A., Malejczyk M., Mlynarczyk G., Majewski S. Antiviral medication in sexually transmitted diseases. Part I: HSV, HPV. Mini-Rev. Med. Chem. 2013;13(13):1837–1845. [PubMed] [Google Scholar]

41. Wegzyn C.M., Wyles D.L. Antiviral drug advances in the treatment of human immunodeficiency virus (HIV) and chronic hepatitis C virus (HCV) Curr. Opin. Pharmacol. 2012;12(5):556–561. [PubMed] [Google Scholar]

42. Gallay P.A. Cyclophilin inhibitors: a novel class of promising host-targeting ant-HCV agents. Immunol. Res. 2012;52(3):200–210. [PMC free article] [PubMed] [Google Scholar]

43. Buti M., Esteban R. Drugs in development for hepatitis B. Drugs. 2005;65(11):1451–1460. [PubMed] [Google Scholar]

44. Jordan R. Discovery and development of antiviral drugs for treatment of pathogenic human orthopoxvirus infections. RSC Drug Discovery Ser. 2013;32:81–110. [Google Scholar]

45. Arts E.J., Hazuda D.J. HIV-1 Targeting the host or the virus: current and novel concepts for antiviral approaches against influenza virus infection drug therapy. Perspect. Med. 2012;2(4) a007161/1-a007161/23. [Google Scholar]

46. Stellbrink H.-J. Antiviral drugs in the treatment of AIDS: what is in the pipeline? Eur. J. Med. Res. 2007;12(9):483–495. [PubMed] [Google Scholar]

47. Karmon S.L., Markowitz M. Next-generation integrase inhibitors. Drugs. 2013;73(3):213–228. [PubMed] [Google Scholar]

48. Laver G. Antiviral drugs for influenza: Tamiflu past, present and future. Future Virol. 2006;1(5):577–586. [Google Scholar]

49. Hayden F.G. Antivirals for influenza: historical perspectives and lessons learned. Antiviral Res. 2006;71(2-3):372–378. [PubMed] [Google Scholar]

50. Wee T., Jenssen H. Influenza drugs—current standards and novel alternatives. J. Antivirals Antiretrovirals. 2009;1(1):001–010. [Google Scholar]

51. Lee S.M.-Y., Yen H.-L. Targeting the host or the virus: current and novel concepts for antiviral approaches against influenza virus infection. Antiviral Res. 2012;96(3):391–404. [PMC free article] [PubMed] [Google Scholar]

52. Saravolac E.G., Wong J.P. Recent patents on development of nucleic acid-based antiviral drugs against seasonal and pandemic influenza virus infections. Recent Pat. Anti-Infect. Drug Discovery. 2007;2(2):140–147. [PubMed] [Google Scholar]

53. Saravolac E.G., Wong J.P. Recent patents on development of nucleic acid-based antiviral drugs against seasonal and pandemic influenza virus infections. Front. Anti-Infect. Drug Discovery. 2010;1:409–425. [PubMed] [Google Scholar]

54. Loregian A., Mercorelli B., Nannetti G., Compagnin C., Palu G. Antiviral strategies against influenza virus: towards new therapeutic approaches. Cell. Mol. Life Sci. 2014;71(19):3659–3683. [PubMed] [Google Scholar]

55. Park S., Kim Jin I., Park M.-S. Antiviral agents against influenza viruses. J. Bacteriol. Virol. 2012;42(4):284–293. [Google Scholar]

56. Driscoll J.S., editor. Antiviral drugs. (Wiley); 2002. [Google Scholar]

57. Gilbert C., Boivin G. Human cytomegalovirus resistance to antiviral drugs. Antimicrob. Agents Chemother. 2005;49(3):873–883. [PMC free article] [PubMed] [Google Scholar]

58. Schang L.M. Herpes simplex viruses in antiviral drug discovery. Curr. Pharm. Des. 2006;12(11):1357–1370. [PubMed] [Google Scholar]

59. Schafer J.J., Squires K.E. Integrase inhibitors: a novel class of antiretroviral agents. Ann. Pharmacother. 2010;44(1):145–156. [PubMed] [Google Scholar]

60. Van Westreenen M., Boucher C.A.B. Classes of antiviral drugs. In: Boucher C.A.B., Galasso G.A., Katzenstein D.A., Cooper D.A., editors. Practical Guidelines in Antiviral Therapy. Elsevier; 2002. pp. 1–12. [Google Scholar]

61. Da L.-T., Quan J.-M., Wu Y.-D. Understanding the binding mode and function of BMS-488043 against HIV-1 viral entry. Proteins: Struct., Funct., Genet. 2011;79(6):1810–1819. [PubMed] [Google Scholar]

62. Yang Z., Zadjura L.M., Marino A.M., D’Arienzo C.J., Malinowski J., Gesenberg C., Lin P.-F., Colonno R.J., Wang T., Kadow J.F., Meanwell N.A., Hansel S.B. Utilization of invitro Caco-2 permeability and liver microsomal half-life screens in discovering BMS-48(8043), a novel HIV-1 attachment inhibitor with improved pharmaco*kinetic properties. J. Pharm. Sci. 2010;99(4):2135–2152. [PubMed] [Google Scholar]

63. Chen K., Risatti C., Bultman M., Soumeillant M., Simpson J., Zheng B., Fanfair D., Mahoney M., Mudryk B., Fox R.J., Hsaio Y., Murugesan S., Conlon D.A., Buono F.G., Eastgate M.D. Synthesis of the 6-azaindole containing HIV-1 attachment inhibitor pro-drug, BMS-66(3068) J. Org. Chem. 2014;79(18):8757–8767. [PubMed] [Google Scholar]

64. Colman P.M., Varghese J.N., Laver W.G. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature (London, U. K.) 1983;303(5912):41–44. [PubMed] [Google Scholar]

65. Ison M.G. Antivirals and resistance: influenza virus. Curr. Opin. Virol. 2011;1(6):563–573. [PubMed] [Google Scholar]

66. Ison M.G. Clinical use of approved influenza antivirals: therapy and prophylaxis. Influenza Other Respir. Viruses. 2013;7(Suppl. 1):7–13. [PMC free article] [PubMed] [Google Scholar]

67. Joly V., Jidar K., Tatay M., Yeni P. Enfuvirtide: from basic investigations to current clinical use. Expert Opin. Pharmacother. 2010;11(16):2701–2713. [PubMed] [Google Scholar]

68. Yao X., Chong H., Zhang C., Qiu Z., Qin B., Han R., Waltersperger S., Wang M., He Y., Cui S. Structural basis of potent and broad HIV-1 fusion inhibitor CP32M. J. Biol. Chem. 2012;287(32):26618–26629. [PMC free article] [PubMed] [Google Scholar]

69. Zhang X., Wu H., Wang F. Sifuvirtide, a novel HIV-1 fusion inhibitor. In: Castanho M., Santos N.C., editors. Peptide Drug Discovery and Development: Translational Research in Academia and Industry. Wiley-VCH; 2011. pp. 231–243. [Google Scholar]

70. Eggink D., Langedijk J.P.M., Bonvin A.M.J.J., Deng Y., Lu M., Berkhout B., Sanders R.W. Detailed mechanistic insights into HIV-1 sensitivity to three generations of fusion inhibitors. J. Biol. Chem. 2009;284(39):26941–26950. [PMC free article] [PubMed] [Google Scholar]

71. Xiao C., McKinlay M.A., Rossmann M.G. Design of capsid-binding antiviral agents against human rhinoviruses. RSC Biomol. Sci. 2011;21(Structural Virology):319–337. [Google Scholar]

72. Zhang G., Zhou F., Gu B., Ding C., Feng D., Xie F., Wang J., Zhang C., Cao Q., Deng Y., Hu W., Yao K. Invitro and invivo evaluation of ribavirin and pleconaril antiviral activity against enterovirus 71 infection. Arch. Virol. 2012;157(4):669–679. [PubMed] [Google Scholar]

73. Thibaut H.J., De Palma A.M., Neyts J. Combating enterovirus replication: state-of-the-art on antiviral research. Biochem. Pharmacol. (Amsterdam, Neth.) 2012;83(2):185–192. [PubMed] [Google Scholar]

74. Dorr P., Stammen B., van der Ryst E. Discovery and development of maraviroc, a CCR5 antagonist for the treatment of HIV infection. In: Huang X., Aslanian R.G., editors. Case Studies in Modern Drug Discovery and Development. Wiley; 2012. pp. 196–226. [Google Scholar]

75. Lieberman-Blum S.S., Fung H.B., Bandres J.C. Maraviroc: a CCR5-receptor antagonist for the treatment of HIV-1 infection. Clin. Ther. 2008;30(7):1228–1250. [PubMed] [Google Scholar]

76. Hubsher G., Haider M., Okun M.S. Amantadine: the journey from fighting flu to treating Parkinson disease. Neurology. 2012;78(14):1096–1099. [PubMed] [Google Scholar]

77. Saito R., Li D., Sato M., Suzuki H. Amantadine. Virus Rep. 2006;3(1):40–47. [Google Scholar]

78. Fleming D.M. Managing influenza: amantadine, rimantadine and beyond. Int. J. Clin. Pract. 2001;55(3):189–195. [PubMed] [Google Scholar]

79. Hayden F.G. Amantadine and rimantadine—clinical aspects. In: Richman D.D., editor. Antiviral Drug Resistance. Wiley; 1996. pp. 59–77. [Google Scholar]

80. Hay A.J. Amantadine and rimantadine-mechanisms. In: Richman D.D., editor. Antiviral Drug Resistance. (Wiley); 1996. pp. 43–58. [Google Scholar]

81. Ghosh A.K., Leshchenko S., Noetzel M. Stereoselective photochemical 1,3-dioxolane addition to 5-alkoxymethyl-2(5H)-furanone: synthesis of bis-tetrahydrofuranyl ligand for HIV protease inhibitor UIC-94017 (TMC-114) J. Org. Chem. 2004;69(23):7822–7829. [PubMed] [Google Scholar]

82. Ghosh A.K., Kincaid J.F., Cho W., Walters D.E., Krishnan K., Hussain K.A., Koo Y., Cho H., Rudall C., Holland L., Buthod J. Potent HIV protease inhibitors incorporating high-affinity P2-ligands and (R)-[(hydroxyethyl)amino]sulfonamide isostere. Bioorg. Med. Chem. Lett. 1998;8(6):687–690. [PubMed] [Google Scholar]

83. Ghosh, A. K.; Leshchenko, S.; Noetzel, M. W. Method of preparing (3R,3aS,6aR)-3-hydroxyhexahydrofuro[2,3-b]furan and related compounds, WO 2004033462 (2004).

84. Erickson, J. W.; Gulnik, S. V., Fitness assay and associated methods, and applications to drug resistance and HIV protease inhibitors and other drugs with reduced resistance, WO 9967417 (1999).

85. Ghosh A.K., Sridhar P.R., Kumaragurubaran N., Koh Y., Weber I.T., Mitsuya H. Bis-tetrahydrofuran: a privileged ligand for darunavir and a new generation of HIV protease inhibitors that combat drug resistance. ChemMedChem. 2006;1(9):939–950. [PubMed] [Google Scholar]

86. Ghosh A.K. Capturing the essence of organic synthesis: from bioactive natural products to designed molecules in today’s medicine. J. Org. Chem. 2010;75(23):7967–7989. [PMC free article] [PubMed] [Google Scholar]

87. Ghosh A.K., Gemma S., Simoni E., Baldridge A., Walters D.E., Ide K., Tojo Y., Koh Y., Amano M., Mitsuya H. Synthesis and biological evaluation of novel allophenylnorstatine-based HIV-1 protease inhibitors incorporating high affinity P2-ligands. Bioorg. Med. Chem. Lett. 2010;20(3):1241–1246. [PMC free article] [PubMed] [Google Scholar]

88. Ruela Correa J.C., D’Arcy D.M., dos Reis Serra C.H., Nunes Salgado H.R. Darunavir: a critical review of its properties, use and drug interactions. Pharmacology. 2012;90(1-2):102–109. [PubMed] [Google Scholar]

89. de Bethune M.-P., Peeters A., Wigerinck P. From saquinavir to darunavir: the impact of 10 years of medicinal chemistry on a lethal disease. Methods Princ. Med. Chem. 2011;50:73–90. [Google Scholar]

90. Deeks E.D. Darunavir: a review of its use in the management of HIV-1 infection. Drugs. 2014;74(1):99–125. [PubMed] [Google Scholar]

91. de Bethune M.-P., Sekar V., Spinosa-Guzman S., Vanstockem M., De Meyer S., Wigerinck P., Lefebvre E. Darunavir (prezista, TMC114): from bench to clinic, improving treatment options for HIV-infected patients. In: Kazmierski W.M., editor. Antiviral Drugs: From Basic Discovery Through Clinical Trials. Wiley; 2011. pp. 31–45. [Google Scholar]

92. Kogawa A.C., Salgado H.R.N. Characteristics, complexation and analytical methods of Darunavir. Br. J. Pharm. Res. 2014;4(11):1276–1286. [Google Scholar]

93. Phung B.-C., Yeni P. Darunavir: an effective protease inhibitor for HIV-infected patients. Expert Rev. Anti-Infect. Ther. 2011;9(6):631–643. [PubMed] [Google Scholar]

94. El-Atrouni W.I., Temesgen Z. Darunavir. Drugs Today. 2007;43(10):671–679. [PubMed] [Google Scholar]

95. Molina J.-M., Hill A. Darunavir (TMC114): a new HIV-1 protease inhibitor. Expert Opin. Pharmacother. 2007;8(12):1951–1964. [PubMed] [Google Scholar]

96. Sorbera L.A., Castaner J., Bayes M. Darunavir. Drugs Future. 2005;30(5):441–449. [Google Scholar]

97. McKeage K., Perry C.M., Keam S.J. Darunavir: a review of its use in the management of HIV infection in adults. Drugs. 2009;69(4):477–503. [PubMed] [Google Scholar]

98. Bold G., Faessler A., Capraro H.-G., Cozens R., Klimkait T., Lazdins J., Mestan J., Poncioni B., Roesel J., Stover D., Tintelnot-Blomley M., Acemoglu F., Beck W., Boss E., Eschbach M., Huerlimann T., Masso E., Roussel S., Ucci-Stoll K., Wyss D., Lang M. New aza-dipeptide analogs as potent and orally absorbed HIV-1 protease inhibitors: candidates for clinical development. J. Med. Chem. 1998;41(18):3387–3401. [PubMed] [Google Scholar]

99. Fassler, A.; Bold, G.; Capraro, H-G.; Steiner, H. Process for the preparation of hydrazine derivatives useful as intermediates for the preparation of peptide analogs, PCT Int. Appl. (1997), WO 9746514 A1 19971211.

100. Thompson W.J., Fitzgerald P.M.D., Holloway M.K., Emini E.A., Darke P.L., McKeever B.M., Schleif W.A., Quintero J.C., Zugay J.A., Tucker T.J., Schwering J.E., Homnick C.F., Nunberg J., Springer J.P., Huff J.R. Synthesis and antiviral activity of a series of HIV-1 protease inhibitors with functionality tethered to the P1 or P1’ phenyl substituents: x-ray crystal structure assisted design. J. Med. Chem. 1992;35:1685–1701. [PubMed] [Google Scholar]

101. Luly J.R., Dellaria J.F., Plattner J.J., Soderquist J.L., Yi N.A. Synthesis of protected aminoalkyl epoxides from R-amino acids. J. Org. Chem. 1987;52:1487–1492. [Google Scholar]

102. Xu Z., Singh J., Schwinden M.D., Zheng B., Kissick T.P., Patel B., Humora M.J., Quiroz F., Dong L., Hsieh D.-M., Heikes J.E., Pudipeddi M., Lindrud M.D., Srivastava S.K., Kronenthal D.R., Mueller R.H. Process research and development for an efficient synthesis of the HIV protease inhibitor BMS-23(2632) Org. Process Res. Dev. 2002;6(3):323–328. [Google Scholar]

103. Fan X., Song Y.-L., Long Y.-Q. An efficient and practical synthesis of the HIV protease inhibitor atazanavir via a highly diastereoselective reduction approach. Org. Process Res. Dev. 2008;12(1):69–75. [Google Scholar]

104. Giordano, C.; Pozzoli, C.; Benedetti, F., Process for the preparation of aryl-pyridinyl compounds, WO 2001027083 (2001).

105. Chen, W. Process for synthesizing atazanavir, WO 2009130534 (2009).

106. Simhadri, S.; Mohammad, Y.; Indukuri, V. S. K.; Gorantla, S. R., Preparation of atazanavir bisulfate, WO 2014030173 (2014).

107. Farajallah A., Bunch R.T., Meanwell N.A. Discovery and development of atazanavir. In: Kazmierski W.M., editor. Antiviral Drugs: From Basic Discovery Through Clinical Trials. Wiley; 2011. pp. 3–17. [Google Scholar]

108. Goldsmith D.R., Perry C.M. Atazanavir. Drugs. 2003;63(16):1679–1693. [PubMed] [Google Scholar]

109. Busti A.J., Hall R.G., II., Margolis D.M. Atazanavir for the treatment of human immunodeficiency virus infection. Pharmacotherapy. 2004;24(12):1732–1747. [PubMed] [Google Scholar]

110. Orrick J.J., Steinhart C.R. Atazanavir. Ann. Pharmacother. 2004;38(10):1664–1674. [PubMed] [Google Scholar]

111. Havlir D.V., O’Marro S.D. Atazanavir: new option for treatment of HIV infection. Clin. Infect. Dis. 2004;38(11):1599–1604. [PubMed] [Google Scholar]

112. Bentue-Ferrer D., Arvieux C., Tribut O., Ruffault A., Bellissant E. Clinical pharmacology, efficacy and safety of atazanavir: a review. Expert Opin. Drug Metab. Toxicol. 2009;5(11):1455–1468. [PubMed] [Google Scholar]

113. Croom K.F., Dhillon S., Keam S.J. Atazanavir: a review of its use in the management of HIV-1 infection. Drugs. 2009;69(8):1107–1140. [PubMed] [Google Scholar]

114. Wood R. Atazanavir: its role in HIV treatment. Expert Rev. Anti-Infect. Ther. 2008;6(6):785–796. [PMC free article] [PubMed] [Google Scholar]

115. von Hentig N. Atazanavir/ritonavir: a review of its use in HIV therapy. Drugs Today. 2008;44(2):103–132. [PubMed] [Google Scholar]

116. Gianotti N., Soria A., Lazzarin A. Antiviral activity and clinical efficacy of atazanavir in HIV-1-infected patients: a review. New Microbiol. 2007;30(2):79–88. [PubMed] [Google Scholar]

117. Harrison T.S., Scott L.J. Atazanavir: a review of its use in the management of HIV infection. Drugs. 2005;65(16):2309–2336. [PubMed] [Google Scholar]

118. Piliero P.J. Atazanavir: A novel once-daily protease inhibitor. Drugs Today. 2004;40(11):901–912. [PubMed] [Google Scholar]

119. Piliero P.J. Atazanavir: a novel HIV-1 protease inhibitor. Expert Opin. Invest. Drugs. 2002;11(9):1295–1301. [PubMed] [Google Scholar]

120. Kempf, D. J.; Norbeck, D. W.; Sham, H. L.; Zhao, C.; Sowin, T. J.; Reno, D. S.; Haight, A. R.; Cooper, A. J. Preparation of peptide analogs as retroviral protease inhibitors, WO 9414436 (1994).

121. Kempf D.J., Sham H.L., Marsh K.C., Flentge C.A., Betebenner D., Green B.E., McDonald E., Vasavanonda S., Saldivar A., Wideburg N.E., Kati W.M., Ruiz L., Zhao C., Fino L.M., Patterson J., Molla A., Plattner J.J., Norbeck D.W. Discovery of ritonavir, a potent inhibitor of HIV protease with high oral bioavailability and clinical efficacy. J. Med. Chem. 1998;41(4):602–617. [PubMed] [Google Scholar]

122. Stuk, T. L.; Allen, M. S.; Haight, A. R.; Kerdesky, F. A.; Langridge, D. C.; Leanna, M. R.; Lijewski, L. M.; Melcher, L.; Morton, H. E.; Robbins, T. A.; Sowin, T. J. Process for the stereoselective preparation of a substituted 2,5-diamino-3-hydroxyhexane as an intermediate for HIV protease inhibitors, US 5491253 (1996).

123. Haight, A. R.; Goodmonson, O. J.; Parekh, S. I.; Robbins, T. A.; Seif, L. S. Process for the preparation of a phenyl-disubstituted 2,5-diamino-3-hydroxyhexane, WO 9604232 (1996).

124. Tien, J J.; Menzia, J. A.; Cooper, A. J. Process for the preparation of HIV protease inhibiting peptide analogs, US 5567823 (1996).

125. Adamo I., Benedetti F., Berti F., Campaner P. Stereoselective hydroazidation of amino enones: synthesis of the ritonavir/lopinavir core. Org. Lett. 2006;8(1):51–54. [PubMed] [Google Scholar]

126. Cheng, Y.; Tanaka, H.; Baba, M. Preparation of 2′,3′-dideoxy and 2′,3′-didehydro nucleoside analogs as prodrugs for treating viral infections, most notably HIV, US 20040167096 (2004).

127. Bellani, P.; Frigerio, M.; Castoldi, P. A process for the synthesis of ritonavir, WO 2001021603 (2001).

128. Kempf D.J., Marsh K.C., Denissen J.F., McDonald E., Vasavanonda S., Flentge C.A., Green B.E., Fino L., Park C.H., Kong X.P. ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc. Natl. Acad. Sci. U. S. A. 1995;92(7):2484–2488. [PMC free article] [PubMed] [Google Scholar]

129. Lea A.P., Faulds D. Ritonavir. Drugs. 1996;52(4):541–546. discussion 547–548. [PubMed] [Google Scholar]

130. Hoetelmans R.M.W., Meenhorst P.L., Mulder J.W., Burger D.M., Koks C.H.W., Beijnen J.H. Clinical pharmacology of HIV protease inhibitors: focus on saquinavir, indinavir, and ritonavir. Pharm. World Sci. 1997;19(4):159–175. [PubMed] [Google Scholar]

131. Hull M.W., Montaner J.S.G. Ritonavir-boosted protease inhibitors in HIV therapy. Ann. Med. 2011;43(5):375–388. [PubMed] [Google Scholar]

132. Sahali S., Chaix M.-L., Delfraissy J.-F., Ghosn J. Ritonavir-boosted protease inhibitor monotherapy for the treatment of HIV-1 infection. AIDS Rev. 2008;10(1):4–14. [PubMed] [Google Scholar]

133. Cooper C.L., van Heeswijk R.P.G., Gallicano K., Cameron D.W. A review of low-dose ritonavir in protease inhibitor combination therapy. Clin. Infect. Dis. 2003;36(12):1585–1592. [PubMed] [Google Scholar]

134. Sham, H. L.; Norbeck, D. W.; Chen, X.; Betebenner, D. A. Preparation of peptide analogs as retroviral protease inhibitors, US 5914332 (1999).

135. Stoner E.J., Cooper A.J., Dickman D.A., Kolaczkowski L., Lallaman J.E., Liu J.-H., Oliver-Shaffer P.A., Patel K.M., Paterson J.B., Jr., Plata D.J., Riley D.A., Sham H.L., Stengel P.J., Tien J.-H.J. Synthesis of HIV protease inhibitor ABT-378 (Lopinavir) Org. Process Res. Dev. 2000;4(4):264–269. [Google Scholar]

136. Stoner E.J., Stengel P.J., Cooper A.J. Synthesis of ABT-378, an HIV protease inhibitor candidate: avoiding the use of carbodiimides in a difficult peptide coupling. Org. Process Res. Dev. 1999;3(2):145–148. [Google Scholar]

137. Stuk T.L., Haight A.R., Scarpetti D., Allen M.S., Menzia J.A., Robbins T.A., Parekh S.I., Langridge D.C., Tien J.-H.J., Pariza R.J., Kerdesky F.A. An efficient stereocontrolled strategy for the synthesis of hydroxyethylene dipeptide isosteres. J. Org. Chem. 1994;59(15):4040–4041. [Google Scholar]

138. Haight A.R., Stuk T.L., Menzia J.A., Robbins T.A. A convenient synthesis of enaminones using tandem acetonitrile condensation. Grignard addition, Tetrahedron Lett. 1997;38(24):4191–4194. [Google Scholar]

139. Nunes E.P., Santini de Oliveira M., Grinsztejn B. Lopinavir: the old champion. Future Virol. 2011;6(5):561–570. [Google Scholar]

140. Hurst M., Faulds D. Lopinavir. Drugs. 2000;60(6):1371–1379. [PubMed] [Google Scholar]

141. Cvetkovic R.S., Goa K.L. Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs. 2003;63(8):769–802. [PubMed] [Google Scholar]

142. Chandwani A., Shuter J. Lopinavir/ritonavir in the treatment of HIV-I infection: a review. Ther. Clin. Risk Manage. 2008;4(5):1023–1033. [PMC free article] [PubMed] [Google Scholar]

143. Oldfield V., Plosker G.L. Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs. 2006;66(9):1275–1299. [PubMed] [Google Scholar]

144. Schaeffer H.J., Beauchamp L., De Miranda P., Elion G.B., Bauer D.J., Collins P. 9-(2-Hydroxyethoxymethyl)guanine activity against viruses of the herpes group. Nature (London, U. K.) 1978;272(5654):583–585. [PubMed] [Google Scholar]

145. Schaeffer, H. J. Compositions for treating viral infections and guanine acyclic nucleosides, US 4199574 (1980).

146. Keyser G.E., Bryant J.D., Barrio J.R. Iodomethyl ethers from 1,3-dioxolane and 1,3-oxathiolane: preparation of acyclic nucleoside analogs. Tetrahedron Lett. 1979;35:3263–3264. [Google Scholar]

147. Barrio J.R., Bryant J.D., Keyser G.E. A direct method for the preparation of 2-hydroxyethoxymethyl derivatives of guanine, adenine, and cytosine. J. Med. Chem. 1980;23(5):572–574. [PubMed] [Google Scholar]

148. Matsumoto H., Kaneko C., Yamada K., Takeuchi T., Mori T., Mizuno Y. A convenient synthesis of 9-[(2-hydroxyethoxy)methyl]guanine (acyclovir) and related compounds. Chem. Pharm. Bull. 1988;36(3):1153–1155. [PubMed] [Google Scholar]

149. Beauchamp L.M., Dolmatch B.L., Schaeffer H.J., Collins P., Bauer D.J., Keller P.M., Fyfe J.A. Modifications on the heterocyclic base of acyclovir: syntheses and antiviral properties. J. Med. Chem. 1985;28(8):982–987. [PubMed] [Google Scholar]

150. Stimac A., Kobe J. A new synthesis of acyclovir prodrugs. N2-acetylacyclovir and 6-deoxyacyclovir. Synthesis. 1990;6:461–464. [Google Scholar]

151. Gao H., Mitra A.K. Synthesis of acyclovir ganciclovir and their prodrugs: a review. Synthesis. 2000;3:329–351. [Google Scholar]

152. Chu C.K., Cutler S.J. Chemistry and antiviral activities of acyclonucleosides. J. Het. Chem. 1986;23(2):289–319. [Google Scholar]

153. Kelley J.L., Schaeffer H.J. Purine acyclic nucleosides. Unambiguous synthesis of acyclovir via a furazano[3,4-d]pyrimidine. J. Heterocycl. Chem. 1986;23(1):271–273. [Google Scholar]

154. Taylor E.C., Beardsley G.P., Maki Y. New, general synthesis of 2-, 8-, and 9-substituted adenines. J. Org. Chem. 1971;36(21):3211–3217. [PubMed] [Google Scholar]

155. Laskin O.L. Acyclovir. Pharmacology and clinical experience. Arch. Intern. Med. 1984;144(6):1241–1246. [PubMed] [Google Scholar]

156. Richards D.M., Carmine A.A., Brogden R.N., Heel R.C., Speight T.M., Avery G.S. Acyclovir. A review of its pharmacodynamic properties and therapeutic efficacy. Drugs. 1983;26(5):378–438. [PubMed] [Google Scholar]

157. Krenitsky, T. A.; Beauchamp, L. M. Acycloxic esters with valine and isoleucine as herpes virucides, EP 308065 (1989).

158. Beauchamp L.M., Krenitsky T.A. Acyclovir prodrugs: the road to valaciclovir. Drugs Future. 1993;18:619–628. [Google Scholar]

159. Prasada Raju V.V.N.K.V., Vedantham R., Khunt M.D., Mathad V.T., Dubey P.K., Chakravarthy A.K. An efficient and large scale process for synthesis of valacyclovir. Asian J. Chem. 2010;22(5):4092–4098. [Google Scholar]

160. Etinger, M. Y.; Yudovich, L. M.; Yuzefovich, M.; Nisnevich, G. A.; Dolitzki, B. Z.; Pertsikov, B.; Tishin, B.; Blasberger, D. Synthesis and purification of valaciclovir, WO 2003041647 (2003).

161. Acosta E.P., Fletcher C.V. Valaciclovir. Ann. Pharmacother. 1997;31(2):185–191. [PubMed] [Google Scholar]

162. Beutner K.R. Valaciclovir: a review of its antiviral activity, pharmaco*kinetic properties, and clinical efficacy. Antiviral Res. 1995;28(4):281–290. [PubMed] [Google Scholar]

163. Smiley M.L., Murray A., De Miranda P. Valaciclovir HCl (Valtrex): an acyclovir prodrug with improved pharmaco*kinetics and better efficacy for treatment of zoster. Adv. Exp. Med. Biol. 1996;394(Antiviral Chemotherapy 4):33–39. [PubMed] [Google Scholar]

164. Antman M.D., Gudmundsson O.S. Valaciclovir: a prodrug of acyclovir. Biotechnol.: Pharm. Aspects. 2007;5(Pt. 2, Prodrugs: Challenges and Rewards):669–676. [Google Scholar]

165. Tyring S.K., Baker D., Snowden W. Valaciclovir for herpes simplex virus infection: long-term safety and sustained efficacy after 20 years’ experience with acyclovir. J. Infect. Dis. 2002;186(Suppl. 1):S40–S46. [PubMed] [Google Scholar]

166. Perry C.M., Faulds D. Valaciclovir: a review of its antiviral activity, pharmaco*kinetic properties and therapeutic efficacy in herpesvirus infections. Drugs. 1996;52(5):754–772. [PubMed] [Google Scholar]

167. Verheyden, J. P. H.; Martin, J. C. 9-(1,3-Dihydroxy-2-propoxymethyl)guanine as antiviral agent, US 4423050 (1983). [PMC free article] [PubMed]

168. Martin J.C., Dvorak C.A., Smee D.F., Matthews T.R., Verheyden J.P.H. 9-(1,3-Dihydroxy-2-propoxymethyl)guanine: a new potent and selective antiherpes agent. J. Med. Chem. 1983;26(5):759–761. [PubMed] [Google Scholar]

169. Ogilvie K.K., Cheriyan U.O., Radatus B.K., Smith K.O., Galloway K.S., Kennell W.L. Biologically active acyclonucleoside analogs. II. The synthesis of 9-[[2-hydroxy-1-(hydroxymethyl)ethoxy]methyl]guanine (BIOLF-62) Can. J. Chem. 1982;60(24):3005–3010. [Google Scholar]

170. Field A.K., Davies M.E., DeWitt C., Perry H.C., Liou R., Germershausen J., Karkas J.D., Ashton W.T., Johnston D.B.R., Tolman R.L. 9-{[2-Hydroxy-1-(hydroxymethyl)ethoxy]methyl}guanine: a selective inhibitor of herpes group virus replication. Proc. Natl. Acad. Sci. U. S. A. 1983;80(13):4139–4143. [PMC free article] [PubMed] [Google Scholar]

171. Ashton W.T., Karkas J.D., Field A.K., Tolman R.L. Activation by thymidine kinase and potent antiherpetic activity of 2′-nor-2′-deoxyguanosine (2′NDG) Biochem. Biophys. Res. Commun. 1982;108(4):1716–1721. [PubMed] [Google Scholar]

172. McGee D.P.C., Martin J.C., Verheyden J.P.H. Synthesis of 9-[(1,3-dihydroxy-2-propoxy)methyl]guanine (DHPG) via condensation of N2,9-diacetylguanine with a sulfinylmethyl ether. Synth. Commun. 1988;18(14):1651–1660. [Google Scholar]

173. Nestor, J. J.; Womble, S. W.; Maag, H. 2-(2-Amino-1,6-dihydro-6-oxo-purin-9-yl)methoxy-1,3-propanediol L-monovaline ester [ganciclovir valine ester] as an antiviral with improved oral absorption, EP 694547 (1996).

174. Ramchandra, R. D.; Narayanrao, K. R.; Purushottam, P. V. Preparation of valganciclovir, EP 1837336 (2007).

175. Arzeno, H. B.; Humphreys, E. R.; Wong, J.; Roberts, C. R. Process for preparing 2-(2-amino-1,6-dihydro-6-oxo-purin-9-yl)methoxy-1,3-propanediol (ganciclovir) mono-L-valinate ester, US 5840890 (1988).

176. Arzeno, H. B.; Humphreys, E. R. Preparation of L-monovaline ester of purine acyclic nucleosides as virucides, WO 9727196 (1997).

177. Dvorak, C. A.; Wren, D. L.; Fisher, L. E.; Axt, S. D.; Humphreys, E. R.; A., Humberto B.; Beard, C. C.; Nguyen, S. L.; Han, Y-K.; Roberts, C. R.; Lund, J. P.; Fatheree, P. R. Process for preparing 2-(2-amino-1,6-dihydro-6-oxo-purin-9-yl)methoxy-1,3-propanediol (ganciclovir) mono-L-valinate ester, US 6040446 (2000).

178. Sharma, M. K.; Raina, S.; Panda, A. K.; Kumar, Y.; Khanduri, C. H. Preparation of ganciclovir mono-N-benzyloxycarbonyl-L-valinate ester, WO 2005092891 (2005).

179. Sorbera L.A., Castaner R., Castaner J. Valganciclovir hydrochloride. Drugs Future. 2000;25(5):474–480. [Google Scholar]

180. Arzeno, H. B.; Beard, C. C.; Fisher, L. E.; Prince, A. Preparation of L-monovaline ester of ganciclovir purine acyclic nucleosides as virucides, WO 9727194 (1970).

181. Arzeno, H. B. Preparation of L-monovaline ester of ganciclovir purine acyclic nucleosides as virucides, WO 9727195 (1997).

182. Arzeno, H. B.; Humphreys, E. R.; Wong, J-W.; Roberts, C. R. Preparation of L-monovaline ester of ganciclovir purine acyclic nucleosides as virucides, WO 9727197 (1997).

183. Arzeno, H. B.; Axt, S. D.; Beard, C. C.; Dvorak, C. A.; Fatheree, P. R.; Fisher, L. E.; Han, Y-K.; Humphreys, E. R.; Lund, J. P.; Nguyen, S. L.; Wren, D. L. Preparation of L-monovaline ester of purine acyclic nucleosides as virucides, WO 9727198 (1997).

184. Martin J.C., Tippe M.A., McGee D.P.C., Verheyden J.P.H. Synthesis and antiviral activity of various esters of 9-[(1,3-dihydroxy-2-propoxy)methyl]guanine. J. Pharm. Sci. 1987;76(2):180–184. [PubMed] [Google Scholar]

185. Curran M., Noble S. Valganciclovir. Drugs. 2001;61(8):1145–1150. [PubMed] [Google Scholar]

186. Cvetkovic R.S., Wellington K. Valganciclovir: a review of its use in the management of CMV infection and disease in immunocompromised patients. Drugs. 2005;65(6):859–878. [PubMed] [Google Scholar]

187. Razonable R.R., Paya C.V. Valganciclovir for the prevention and treatment of cytomegalovirus disease in immunocompromised hosts. Expert Rev. Anti-Infect. Ther. 2004;2(1):27–42. [PubMed] [Google Scholar]

188. Cocohoba J.M., McNicholl I.R. Valganciclovir: an advance in cytomegalovirus therapeutics. Ann. Pharmacother. 2002;36(6):1075–1079. [PubMed] [Google Scholar]

189. Reusser P. Oral valganciclovir: a new option for treatment of cytomegalovirus infection and disease in immunocompromised hosts. Expert Opin. Invest. Drugs. 2001;10(9):1745–1753. [PubMed] [Google Scholar]

190. Pescovitz M.D. Valganciclovir: recent progress. Am. J. Transplant. 2010;10(6):1359–1364. [PubMed] [Google Scholar]

191. Perrottet N., Decosterd L.A., Meylan P., Pascual M., Biollaz J., Buclin T. Valganciclovir in adult solid organ transplant recipients. Clin. Pharmaco*kinet. 2009;48(6):399–418. [PubMed] [Google Scholar]

192. Maag H. Valganciclovir: a prodrug of ganciclovir. Biotechnol.: Pharm. Aspects. 2007;5(Pt. 2, Prodrugs: Challenges and Rewards, Part 2):677–686. [Google Scholar]

193. Balzarini J., De Clercq E. Nucleoside and nucleotide reverse transcriptase inhibitors. In: De Clercq E.D.A., editor. Antiretroviral Therapy. American Society Microbiolgy; 2001. pp. 31–62. [Google Scholar]

194. De Clercq E. New developments in anti-HIV chemotherapy. Biochim. Biophys. Acta, Mol. Basis Dis. 2002;1587(2-3):258–275. [PubMed] [Google Scholar]

195. Cihlar T., Ray A.S. Nucleoside and nucleotide HIV reverse transcriptase inhibitors: 25 years after zidovudine. Antiviral Res. 2010;85(1):39–58. [PubMed] [Google Scholar]

196. Waters L., Boffito M. Pharmacology of current and investigational human immunodeficiency virus (HIV) Nucleoside/nucleotide reverse transcriptase inhibitors in adults. Anti-Infect. Agents Med. Chem. 2007;6(3):213–221. [Google Scholar]

197. Back D.J., Burger D.M., Flexner C.W., Gerber J.G. The pharmacology of antiretroviral nucleoside and nucleotide reverse transcriptase inhibitors: implications for once-daily dosing. JAIDS, J. Acquired Immune Defic. Syndr. 2005;39(Suppl. 1):S1–S23. [PubMed] [Google Scholar]

198. Das K., Arnold E. HIV-1 reverse transcriptase and antiviral drug resistance. Part 1. Curr. Opin. Virol. 2013;3(2):111–118. [PMC free article] [PubMed] [Google Scholar]

199. Das K., Arnold E. HIV-1 reverse transcriptase and antiviral drug resistance. Part 2. Curr. Opin. Virol. 2013;3(2):119–128. [PMC free article] [PubMed] [Google Scholar]

200. Holy A., Rosenberg I. Preparation of 5′-O-phosphonylmethyl analogs of nucleoside-5′-phosphates, 5′-diphosphates and 5′-triphosphates. Coll. Czech. Chem. Comm. 1982;47(12):3447–3463. [Google Scholar]

201. Holy A., Dvorakova H., Masojidkova M. Synthesis of enantiomeric N-(2-phosphonomethoxy-propyl) derivatives of purine and pyrimidine bases. II. The synthon approach. Coll. Czech. Chem. Comm. 1995;60(8):1390–1409. [Google Scholar]

202. Holy A., Masojidkova M. Synthesis of enantiomeric N-(2-phosphonomethoxypropyl) derivatives of purine and pyrimidine bases. I. The stepwise approach. Coll. Czech. Chem. Comm. 1995;60(7):1196–1212. [Google Scholar]

203. Schultze L.M., Chapman H.H., Dubree N.J.P., Jones R.J., Kent K.M., Lee T.T., Louie M.S., Postich M.J., Prisbe E.J., Rohloff J.C., Yu R.H. Practical synthesis of the anti-HIV drug. PMPA, Tetrahedron Lett. 1998;39(14):1853–1856. [Google Scholar]

204. Barral K., Priet S., Sire J., Neyts J., Balzarini J., Canard B., Alvarez K. Synthesis, invitro antiviral evaluation, and stability studies of novel α-borano-nucleotide analogues of 9-[2-(phosphonomethoxy)ethyl]adenine and (r)-9-[2-(phosphonomethoxy)propyl]adenine. J. Med. Chem. 2006;49(26):7799–7806. [PubMed] [Google Scholar]

205. Ripin D.H.B., Teager D.S., Fortunak J., Basha S.M., Bivins N., Boddy C.N., Byrn S., Catlin K.K., Houghton S.R., Jagadeesh S.T., Kumar K.A., Melton J., Muneer S., Rao L.N., Rao R.V., Ray P.C., Reddy N.G., Reddy R.M., Shekar K.C., Silverton T., Smith D.T., Stringham R.W., Subbaraju G.V., Talley F., Williams A. Process improvements for the manufacture of tenofovir disoproxil fumarate at commercial scale. Org. Process Res. Dev. 2010;14(5):1194–1201. [Google Scholar]

206. De Clercq E. Discovery and development of tenofovir disoproxil fumarate. In: Kazmierski W.M., editor. Antiviral Drugs: From Basic Discovery Through Clinical Trials. Wiley; 2011. pp. 85–101. [Google Scholar]

207. Kearney B.P., Flaherty J.F., Shah J. Tenofovir disoproxil fumarate: clinical pharmacology and pharmaco*kinetics. Clin. Pharmaco*kinet. 2004;43(9):595–612. [PubMed] [Google Scholar]

208. Gallant J.E., Deresinski S. Tenofovir disoproxil fumarate. Clin. Infect. Dis. 2003;37(7):944–950. [PubMed] [Google Scholar]

209. Chapman T.M., McGavin J.K., Noble S. Tenofovir disoproxil fumarate. Drugs. 2003;63(15):1597–1608. [PubMed] [Google Scholar]

210. Grim S.A., Romanelli F. Tenofovir disoproxil fumarate. Ann. Pharmacother. 2003;37(6):849–859. [PubMed] [Google Scholar]

211. Fung H.B., Stone E.A., Piacenti F.J. Tenofovir disoproxil fumarate: a nucleotide reverse transcriptase inhibitor for the treatment of HIV infection. Clin. Ther. 2002;24(10):1515–1548. [PubMed] [Google Scholar]

212. De Clercq E. Tenofovir: quo vadis anno 2012 (where is it going in the year 2012)? Med. Res. Rev. 2012;32(4):765–785. [PubMed] [Google Scholar]

213. Celum C., Baeten J.M. Tenofovir-based pre-exposure prophylaxis for HIV prevention: evolving evidence. Curr. Opin. Infect. Dis. 2012;25(1):51–57. [PMC free article] [PubMed] [Google Scholar]

214. Perry C.M., Simpson D. Tenofovir disoproxil fumarate: in chronic hepatitis B. Drugs. 2009;69(16):2245–2256. [PubMed] [Google Scholar]

215. Buti M., Homs M. Tenofovir disoproxil fumarate in the treatment of chronic hepatitis B. Expert Rev. Gastroenterol. Hepatol. 2012;6(4):413–421. [PubMed] [Google Scholar]

216. Jenh A.M., Thio C.L., Pham P.A. Tenofovir for the treatment of hepatitis B virus. Pharmacotherapy. 2009;29(10):1212–1227. [PubMed] [Google Scholar]

217. Pham P.A., Gallant J.E. Tenofovir disoproxil fumarate for the treatment of HIV infection. Expert Opin. Drug Metab. Toxicol. 2006;2(3):459–469. [PubMed] [Google Scholar]

218. Lyseng-Williamson K.A., Reynolds N.A., Plosker G.L. Tenofovir disoproxil fumarate: a review of its use in the management of HIV infection. Drugs. 2005;65(3):413–432. [PubMed] [Google Scholar]

219. Foggia M., Nappa S., Bonadies G., Cotugno M., Di Filippo G., Borrelli F., Orlando R., Borgia G. Tenofovir disoproxil fumarate in the clinical practice: an overview. Anti-Infect. Agents Med. Chem. 2008;7(4):285–295. [Google Scholar]

220. James C., Preininger L., Sweet M. Rilpivirine: a second-generation nonnucleoside reverse transcriptase inhibitor. Am. J. Health-Syst. Pharm. 2012;69(10):857–861. [PubMed] [Google Scholar]

221. Sahlberg C., Zhou X.-X. Development of non-nucleoside reverse transcriptase inhibitor inhibitors for anti-HIV therapy. Anti-Infect. Agents Med. Chem. 2008;7(2):101–117. [Google Scholar]

222. Pedersen O.S., Pedersen E.B. Non-nucleoside reverse transcriptase inhibitors: the NNRTI boom. Antiviral Chem. Chemother. 1999;10(6):285–314. [PubMed] [Google Scholar]

223. Zhan P., Liu X. Novel HIV-1 non-nucleoside reverse transcriptase inhibitors: a patent review (2005 - 2010) Expert Opin. Ther. Pat. 2011;21(5):717–796. [PubMed] [Google Scholar]

224. Pauwels R., Andries K., Debyser Z., Van Daele P., Schols D., Stoffels P., De Vreese K., Woestenborghs R., Vandamme A.M., Janssen C.G.M., Cauwenbergh J.A.G., Desmyter J., Heykants J., Janssen M.A.C., De Clercq E., Janssen P.A.J. Potent and highly selective human immunodeficiency virus type 1 (HIV-1) inhibition by a series of α-anilinophenylacetamide derivatives targeted at HIV-1 reverse transcriptase. Proc. Natl. Acad. Sci. U. S. A. 1993;90(5):1711–1715. [PMC free article] [PubMed] [Google Scholar]

225. Buckheit K.W., Yang L., Buckheit R.W., Jr. Development of dual-acting pyrimidinediones as novel and highly potent topical anti-HIV microbicides. Antimicrob. Agents Chemother. 2011;55(11):5243–5254. [PMC free article] [PubMed] [Google Scholar]

226. Ludovici D.W., Kukla M.J., Grous P.G., Krishnan S., Andries K., de Bethune M.-P., Azijn H., Pauwels R., De Clercq E., Arnold E., Janssen P.A.J. Evolution of anti-HIV drug candidates. Part 1: From α-Anilinophenylacetamide (α-APA) to imidoyl thiourea (ITU) Bioorg. Med. Chem. Lett. 2001;11(17):2225–2228. [PubMed] [Google Scholar]

227. Ludovici D.W., Kavash R.W., Kukla M.J., Ho C.Y., Ye H., De Corte B.L., Andries K., de Bethune M.-P., Azijn H., Pauwels R., Moereels H.E.L., Heeres J., Koymans L.M.H., de Jonge M.R., Van Aken K.J.A., Daeyaert F.F.D., Lewi P.J., Das K., Arnold E., Janssen P.A.J. Evolution of anti-HIV drug candidates. Part 2: Diaryltriazine (DATA) analogues. Bioorg. Med. Chem. Lett. 2001;11(17):2229–2234. [PubMed] [Google Scholar]

228. De Clercq E. Perspectives of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection. Farmaco. 1999;54(1-2):26–45. [PubMed] [Google Scholar]

229. Yasuda N., Tan L. Efavirenz, a non-nucleoside reverse transcriptase inhibitor (NNRTI), and a previous structurally related development candidate. In: Yasuda N., editor. The Art of Process Chemistry. 2011. pp. 1–43. [Google Scholar]

230. Rakhmanina N.Y., van den Anker J.N. Efavirenz in the therapy of HIV infection. Expert Opin. Drug Metab. Toxicol. 2010;6(1):95–103. [PMC free article] [PubMed] [Google Scholar]

231. Best B.M., Goicoechea M. Efavirenz—still first-line king? Expert Opin. Drug Metab. Toxicol. 2008;4(7):965–972. [PMC free article] [PubMed] [Google Scholar]

232. Adkins J.C., Noble S. Efavirenz. Drugs. 1998;56(6):1055–1064. [PubMed] [Google Scholar]

233. Adams W.J., Aristoff P.A., Jensen R.K., Morozowich W., Romero D.L., Schinzer W.C., Tarpley W.G., Thomas R.C. Discovery and development of the BHAP nonnucleoside reverse transcriptase inhibitor delavirdine mesylate. Pharm. Biotechnol. 1998;11:285–312. [PubMed] [Google Scholar]

234. Freimuth W.W. Delavirdine mesylate, a potent non-nucleoside HIV-1 reverse transcriptase inhibitor. Adv. Exp. Med. Biol. 1996;394(4):279–289. [PubMed] [Google Scholar]

235. Scott L.J., Perry C.M. Delavirdine: a review of its use in HIV infection. Drugs. 2000;60(6):1411–1444. [PubMed] [Google Scholar]

236. Murphy R.L., Montaner J. Nevirapine: a review of its development, pharmacological profile and potential for clinical use. Expert Opin. Invest. Drugs. 1996;5(9):1183–1199. [Google Scholar]

237. Grozinger K., Proudfoot J., Hargrave K. Discovery and development of nevirapine. In: Chorghade M.S., editor. Vol. 1. Wiley-Interscience; 2006. pp. 353–363. (Drug Discovery and Development). [Google Scholar]

238. Milinkovic A., Martinez E. Nevirapine in the treatment of HIV. Expert Rev. Anti-Infect. Ther. 2004;2(3):367–373. [PubMed] [Google Scholar]

239. Podzamczer D., Fumero E. The role of nevirapine in the treatment of HIV-1 disease. Expert Opin. Pharmacother. 2001;2(12):2065–2078. [PubMed] [Google Scholar]

240. Schiller D.S., Youssef-Bessler M. Etravirine: a second-generation nonnucleoside reverse transcriptase inhibitor (NNRTI) active against NNRTI-resistant strains of HIV. Clin. Ther. 2009;31(4):692–704. [PubMed] [Google Scholar]

241. Kakuda T.N., Scholler-Gyure M., Hoetelmans R.M.W. Clinical perspective on antiretroviral drug-drug interactions with the non-nucleoside reverse transcriptase inhibitor etravirine. Antiviral Ther. 2010;15(6):817–829. [PubMed] [Google Scholar]

242. Janssen P.A.J., Lewi P.J., Arnold E., Daeyaert F., de Jonge M., Heeres J., Koymans L., Vinkers M., Guillemont J., Pasquier E., Kukla M., Ludovici D., Andries K., de Bethune M.-P., Pauwels R., Das K., Clark A.D., Jr., Frenkel Y.V., Hughes S.H., Medaer B., De Knaep F., Bohets H., De Clerck F., Lampo A., Williams P., Stoffels P. In search of a novel anti-HIV drug: multidisciplinary coordination in the discovery of 4-[[4-[[4-[(1e)-2-cyanoethenyl]-2,6-dimethylphenyl]amino]-2- pyrimidinyl]amino]benzonitrile (R27(8474), rilpivirine) J. Med. Chem. 2005;48(6):1901–1909. [PubMed] [Google Scholar]

243. Sanford M. Rilpivirine. Drugs. 2012;72(4):525–541. [PubMed] [Google Scholar]

244. Fernandez-Montero J.V., Vispo E., Anta L., de Mendoza C., Soriano V. Rilpivirine: a next-generation non-nucleoside analogue for the treatment of HIV infection. Expert Opin. Pharmacother. 2012;13(7):1007–1014. [PubMed] [Google Scholar]

245. Garvey L., Winston A. Rilpivirine: a novel non-nucleoside reverse transcriptase inhibitor. Expert Opin. Invest. Drugs. 2009;18(7):1035–1041. [PubMed] [Google Scholar]

246. Ripamonti D., Bombana E., Rizzi M. Rilpivirine: drug profile of a second-generation non-nucleoside reverse transcriptase HIV-inhibitor. Expert Rev. Anti-Infect. Ther. 2014;12(1):13–29. [PubMed] [Google Scholar]

247. Zaharatos G.J., Wainberg M.A. Update on rilpivirine: A new potent non-nucleoside reverse transcriptase inhibitor (NNRTI) of HIV replication. Ann. Med. 2013;45(3):236–241. [PubMed] [Google Scholar]

248. Schafer J.J., Short W.R. Rilpivirine, a novel non-nucleoside reverse transcriptase inhibitor for the management of HIV-1 infection: a systematic review. Antiviral Ther. 2012;17(8):1495–1502. [PubMed] [Google Scholar]

249. James C., Preininger L., Sweet M. Rilpivirine: a second-generation nonnucleoside reverse transcriptase inhibitor. Am. J. Health-Syst. Pharm. 2012;69(10):857–861. [PubMed] [Google Scholar]

250. Platten M., Faetkenheuer G. Lersivirine-a new drug for HIV infection therapy. Expert Opin. Invest. Drugs. 2013;22(12):1687–1694. [PubMed] [Google Scholar]

251. Sorbera L.A., Castaner J., Bayes M. Capravirine. Drugs Future. 2003;28(12):1149–1158. [Google Scholar]

252. Deeks E.D. Emtricitabine/rilpivirine/tenofovir disoproxil fumarate single-tablet regimen: a review of its use in HIV infection. Drugs. 2014;74(17):2079–2095. [PubMed] [Google Scholar]

253. Hazuda D., Iwamoto M., Wenning L. Emerging pharmacology: inhibitors of human immunodeficiency virus integration. Annu. Rev. Pharmacol. Toxicol. 2009;49:377–394. [PubMed] [Google Scholar]

254. Di Santo R. Inhibiting the HIV integration process: past, present, and the future. J. Med. Chem. 2014;57(3):539–566. [PMC free article] [PubMed] [Google Scholar]

255. Johns B.A., Kawasuji T., Velthuisen E.J. HIV integrase inhibitors. RSC Drug Discovery Ser. 2013;32:149–188. [Google Scholar]

256. Metifiot M., Marchand C., Pommier Y. HIV integrase inhibitors: 20-year landmark and challenges. Adv. Pharmacol. (San Diego, CA, U. S.) 2013;67(Antiviral Agents):75–105. [PMC free article] [PubMed] [Google Scholar]

257. Dayam R., Gundla R., Al-Mawsawi L.Q., Neamati N. HIV-1 integrase inhibitors: 2005-2006 update. Med. Res. Rev. 2008;28(1):118–154. [PubMed] [Google Scholar]

258. Hazuda D.J., Felock P., Witmer M., Wolfe A., Stillmock K., Grobler J.A., Espeseth A., Gabryelski L., Schleif W., Blau C., Miller M.D. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science (Washington, DC, U. S.) 2000;287:646–650. [PubMed] [Google Scholar]

259. Fujish*ta, T.; Yoshinaga, T.; Sato, A., Aromatic heterocycle compounds having HIV integrase inhibiting activities, WO2000039086 (2000).

260. Zhuang L., Wai J.S., Embrey M.W., Fisher T.E., Egbertson M.S., Payne L.S., Guare J.P., Jr., Vacca J.P., Hazuda D.J., Felock P.J., Wolfe A.L., Stillmock K.A., Witmer M.V., Moyer G., Schleif W.A., Gabryelski L.J., Leonard Y.M., Lynch J.J., Jr., Michelson S.R., Young S.D. Design and synthesis of 8-hydroxy-[1,6]-naphthyridines as novel inhibitors of HIV-1 integrase invitro and in infected cells. J. Med. Chem. 2003;46:453–456. [PubMed] [Google Scholar]

261. Guare J.P., Wai J.S., Gomez R.P., Anthony N.J., Jolly S.M., Cortes A.R., Vacca J.P., Felock P.J., Stillmock K.A., Schleif W.A., Moyer G., Gabryelski L.J., Jin L., Chen I.W., Hazuda D.J., Young S.D. A series of 5-aminosubstituted 4-fluorobenzyl-8-hydroxy-[1,6]naphthyridine-7-carboxamide HIV-1 integrase inhibitors. Bioorg. Med. Chem. Lett. 2006;16:2900–2904. [PubMed] [Google Scholar]

262. Hazuda D.J., Young S.D., Guare J.P., Anthony N.J., Gomez R.P., Wai J.S., Vacca J.P., Handt L., Motzel S.L., Klein H.G., Dornadula G., Danovich R.M., Witmer M.V., Wilson K.A., Tussey L., Schleif W.A., Gabryelski L.S., Jin L., Miller M.D., Casimiro D.R., Emini E.A., Shiver J.W. Integrase inhibitors and cellular immunity suppress retroviral replication in rhesus macaques. Science (Washington, DC, U. S.) 2004;305:528–532. [PubMed] [Google Scholar]

263. Summa V., Petrocchi A., Matassa V.G., Gardelli C., Muraglia E., Rowley M., Paz O.G., Laufer R., Monteagudo E., Pace P. 4,5-Dihydroxypyrimidine carboxamides and N-alkyl-5-hydroxypyrimidinone carboxamides are potent, selective HIV integrase inhibitors with good pharmaco*kinetic profiles in preclinical species. J. Med. Chem. 2006;49:6646–6649. [PubMed] [Google Scholar]

264. Anker M., Corales R.B. Raltegravir (MK-0518): a novel integrase inhibitor for the treatment of HIV infection. Expert Opin. Invest. Drugs. 2008;17:97–103. [PubMed] [Google Scholar]

265. Summa V., Petrocchi A., Bonelli F., Crescenzi B., Donghi M., Ferrara M., Fiore F., Gardelli C., Paz O.G., Hazuda D.J., Jones P., Kinzel O., Laufer R., Monteagudo E., Muraglia E., Nizi E., Orvieto F., Pace P., Pescatore G., Scarpelli R., Stillmock K., Witmer M.V., Rowley M. Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J. Med. Chem. 2008;51:5843–5855. [PubMed] [Google Scholar]

266. Beare K.D., Coster M.J., Rutledge P.J. Diketoacid inhibitors of HIV-1 integrase: from L-708,906 to raltegravir and beyond. Curr. Med. Chem. 2012;19(8):1177–1192. [PubMed] [Google Scholar]

267. Summa V., Pace P. Discovery and development of HIV integrase inhibitor raltegravir. In: Kazmierski W.M., editor. Antiviral Drugs: From Basic Discovery Through Clinical Trials. Wiley; 2011. pp. 181–195. [Google Scholar]

268. Rowley M. The discovery of raltegravir, an integrase inhibitor for the treatment of HIV infection. Prog. Med. Chem. 2008;46:1–28. [PubMed] [Google Scholar]

269. Evering T.H., Markowitz M. Raltegravir: an integrase inhibitor for HIV-1. Expert Opin. Invest. Drugs. 2008;17(3):413–422. [PubMed] [Google Scholar]

270. Hicks C., Gulick R.M. Raltegravir: the first HIV type 1 integrase inhibitor. Clin. Infect. Dis. 2009;48(7):931–939. [PubMed] [Google Scholar]

271. Cocohoba J., Dong B.J. Raltegravir: the first HIV integrase inhibitor. Clin. Ther. 2008;30(10) 2747–1765. [PubMed] [Google Scholar]

272. Sayana S., Khanlou H. Raltegravir: the first in a new class of integrase inhibitors for the treatment of HIV. Expert Rev. Anti-Infect. Ther. 2008;6(4):419–426. [PubMed] [Google Scholar]

273. Temesgen Z., Siraj D.S. Raltegravir: first in class HIV integrase inhibitor. Ther. Clin. Risk Manage. 2008;4(2):493–500. [PMC free article] [PubMed] [Google Scholar]

274. Croxtall J.D., Lyseng-Williamson K.A., Perry C.M. Raltegravir. Drugs. 2008;68(1):131–138. [PubMed] [Google Scholar]

275. Calin R., Katlama C. The place of raltegravir in the clinical management of HIV-1 infection. Clin. Pract. (London, U. K.) 2013;10(4):427–438. [Google Scholar]

276. Rokas K.E.E., Brandon B.P., Shamroe C.L., Scott S.S., Millisor V.E., Bryant J.E., Weissman S.B. Role of raltegravir in HIV-1 management. Ann. Pharmacother. 2012;46(4):578–589. [PubMed] [Google Scholar]

277. Brainard D.M., Wenning L.A., Stone J.A., Wagner J.A., Iwamoto M. Clinical pharmacology profile of raltegravir, an HIV-1 integrase strand transfer inhibitor. J. Clin. Pharmacol. 2011;51(10):1375–1402. [PubMed] [Google Scholar]

278. Okeke N.L., Hicks C. Role of raltegravir in the management of HIV-1 infection. HIV/AIDS. 2011;3:81–92. [PMC free article] [PubMed] [Google Scholar]

279. Nunes E.P., Santini de Oliveira M., Grinsztejn B. Clinical use of raltegravir: a review. HIV Ther. 2010;4(5):531–542. [Google Scholar]

280. Burger D.M. Raltegravir: a review of its pharmaco*kinetics, pharmacology and clinical studies. Expert Opin. Drug Metab. Toxicol. 2010;6(9):1151–1160. [PubMed] [Google Scholar]

281. Evering T.H., Markowitz M. Raltegravir (MK-0518): an integrase inhibitor for the treatment of HIV-1. Drugs Today. 2007;43(12):865–877. [PubMed] [Google Scholar]

282. Shimura K., Kodama E.N. Elvitegravir: a new HIV integrase inhibitor. Antiviral Chem. Chemother. 2009;20(2):79–85. [PubMed] [Google Scholar]

283. Deeks E.D. Elvitegravir: a review of its use in adults with HIV-1 infection. Drugs. 2014;74(6):687–697. [PubMed] [Google Scholar]

284. Ramanathan S., Mathias A.A., German P., Kearney B.P. Clinical pharmaco*kinetic and pharmacodynamic profile of the HIV integrase inhibitor elvitegravir. Clin. Pharmaco*kinet. 2011;50(4):229–244. [PubMed] [Google Scholar]

285. Karmon S.L., Markowitz M. Next-generation integrase inhibitors. Drugs. 2013;73(3):213–228. [PubMed] [Google Scholar]

286. Wainberg M.A., Mesplede T., Quashie P.K. The development of novel HIV integrase inhibitors and the problem of drug resistance. Curr. Opin. Virol. 2012;2(5):656–662. [PubMed] [Google Scholar]

287. Shah B.M., Schafer J.J., De Simone J.A., Jr. Dolutegravir: a new integrase strand transfer inhibitor for the treatment of HIV. Pharmacotherapy. 2014;34(5):506–520. [PubMed] [Google Scholar]

288. Max B., Vibhakar S. Dolutegravir: a new HIV integrase inhibitor for the treatment of HIV infection. Future Virol. 2014;9(11):967–978. [Google Scholar]

289. McCormack P.L. Dolutegravir: a review of its use in the management of HIV-1 infection in adolescents and adults. Drugs. 2014;74(11):1241–1252. [PubMed] [Google Scholar]

290. Belyk, K., M.; Morrison, H., G.; Jones, P.; Summa, V., Preparation of N-(4-fluorobenzyl)-5-hydroxy-1-methyl-2-(1-methyl-1-{[(5-methyl-1,3,4-oxadiazol-2-yl)carbonyl]amino}ethyl)-6-oxo-1,6-dihydropyrimidine-4-carboxamide potassium salts as HIV integrase inhibitors, WO 2006060712 (2006).

291. Humphrey G.R., Pye P.J., Zhong Y.-L., Angelaud R., Askin D., Belyk K.M., Maligres P.E., Mancheno D.E., Miller R.A., Reamer R.A., Weissman S.A. Development of a second-generation, highly efficient manufacturing route for the HIV integrase inhibitor raltegravir potassium. Org. Process Res. Dev. 2011;15(1):73–83. [Google Scholar]

292. Hunt J.A. Raltegravir (Isentress): the first-in-class HIV-1 integrase inhibitor. In: Li J.J., Johnson D.S., editors. Modern Drug Synthesis. Wiley; 2010. pp. 3–15. [Google Scholar]

293. Humphrey G.R., Zhong Y.-L. HIV integrase inhibitor: raltegravir. In: Yasuda N., editor. The Art of Process Chemistry. Wiley-VCH; 2011. pp. 165–190. [Google Scholar]

294. Patil G.D., Kshirsagar S.W., Shinde S.B., Patil P.S., Deshpande M.S., Chaudhari A.T., Sonawane S.P., Maikap G.C., Gurjar M.K. Identification, synthesis, and strategy for minimization of potential impurities observed in raltegravir potassium drug substance. Org. Process Res. Dev. 2012;16(8):1422–1429. [Google Scholar]

295. Gurjar, M. K.; Sonawane, S. P.; Maikap, G. S.; Patil, G. D.; Shinde, S. B.; Patil, P. S.; Mehta, S. S., Process for the preparation of raltegravir, WO 2013098854 (2013).

296. Sippl W., Jung M. DNA methyltransferase inhibitors. Methods Princ. Med. Chem. 2009;42(Epigenetic Targets in Drug Discovery):163–183. [Google Scholar]

297. Frick D.N., Lam A.M.I. Understanding helicases as a means of virus control. Curr. Pharm. Des. 2006;12(11):1315–1338. [PMC free article] [PubMed] [Google Scholar]

298. Xi X.G. Helicases as antiviral and anticancer drug targets. Curr. Med. Chem. 2007;14(8):883–915. [PubMed] [Google Scholar]

299. Belon C.A., Frick D.N. Helicase inhibitors as specifically targeted antiviral therapy for hepatitis C. Future Virol. 2009;4(3):277–293. [PMC free article] [PubMed] [Google Scholar]

300. Amorim M.J., Kao R.Y., Digard P. Nucleozin targets cytoplasmic trafficking of viral ribonucleoprotein-Rab11 complexes in influenza A virus infection. J. Virol. 2013;87(8):4694–4703. [PMC free article] [PubMed] [Google Scholar]

301. Gerritz S.W., Cianci C., Kim S., Pearce B.C., Deminie C., Discotto L., McAuliffe B., Minassian B.F., Shi S., Zhu S., Zhai W., Pendri A., Li G., Poss M.A., Edavettal S., McDonnell P.A., Lewis H.A., Maskos K., Mortl M., Kiefersauer R., Steinbacher S., Baldwin E.T., Metzler W., Bryson J., Healy M.D., Philip T., Zoeckler M., Schartman R., Sinz M., Leyva-Grado V.H., Hoffmann H.-H., Langley D.R., Meanwell N.A., Krystal M. Inhibition of influenza virus replication via small molecules that induce the formation of higher-order nucleoprotein oligomers. Proc. Natl. Acad. Sci. U. S. A. 2011;108(37):15366–15371. [PMC free article] [PubMed] [Google Scholar]

302. Belema M., Lopez O.D., Bender J.A., Romine J.L., St. Laurent D.R., Langley D.R., Lemm J.A., O’Boyle D.R., II., Sun J.-H., Wang C., Fridell R.A., Meanwell N.A. Discovery and development of hepatitis C virus NS5A replication complex inhibitors. J. Med. Chem. 2014;57(5):1643–1672. [PubMed] [Google Scholar]

303. Gentile I., Borgia F., Coppola N., Buonomo A.R., Castaldo G., Borgia G. Daclatasvir: the first of a new class of drugs targeted against hepatitis C virus NS5A. Curr. Med. Chem. 2014;21(12):1391–1404. [PubMed] [Google Scholar]

304. Muratore G., Goracci L., Mercorelli B., Foeglein A., Digard P., Cruciani G., Palu G., Loregian A. Small molecule inhibitors of influenza A and B viruses that act by disrupting subunit interactions of the viral polymerase. Proc. Natl. Acad. Sci. U. S. A. 2012;109(16):6247–6252. [PMC free article] [PubMed] [Google Scholar]

305. Lou Z., Sun Y., Rao Z. Current progress in antiviral strategies. Trends Pharmacol. Sci. 2014;35(2):86–102. [PMC free article] [PubMed] [Google Scholar]

306. Ludwig S. Targeting cell signaling pathways to fight the flu: towards a paradigm change in anti-influenza therapy. J. Antimicrob. Chemother. 2009;64(1):1–4. [PubMed] [Google Scholar]

307. Mercorelli B., Sinigalia E., Loregian A., Palu G. Human cytomegalovirus DNA replication: antiviral targets and drugs. Rev. Med. Virol. 2008;18(3):177–210. [PubMed] [Google Scholar]

308. Cheng H., Wan J., Lin M.-I., Liu Y., Lu X., Liu J., Xu Y., Chen J., Tu Z., Cheng Y.-S.E., Ding K. Design, synthesis, and invitro biological evaluation of 1H-1,2,3-Triazole-4-carboxamide derivatives as new anti-influenza A agents targeting virus nucleoprotein. J. Med. Chem. 2012;55(5):2144–2153. [PubMed] [Google Scholar]

Antiviral Drugs (2024)
Top Articles
Latest Posts
Article information

Author: Fr. Dewey Fisher

Last Updated:

Views: 6371

Rating: 4.1 / 5 (62 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Fr. Dewey Fisher

Birthday: 1993-03-26

Address: 917 Hyun Views, Rogahnmouth, KY 91013-8827

Phone: +5938540192553

Job: Administration Developer

Hobby: Embroidery, Horseback riding, Juggling, Urban exploration, Skiing, Cycling, Handball

Introduction: My name is Fr. Dewey Fisher, I am a powerful, open, faithful, combative, spotless, faithful, fair person who loves writing and wants to share my knowledge and understanding with you.