Primary Disorders of Phosphate Metabolism (2024)

1.

Yanagawa N, Nakhoul F, Kurokawa K, Lee DBN. Physiology of phosphorus metabolism. In: Narins RG, ed. Clinical disorders of fluid and electrolyte metabolism. 5th ed. New York: McGraw Hill,1994; 307-371.

2.

Lee DBN, Walling MW, Brautbar N. Intestinal phosphate absorption: Influence of vitamin D and non-vitamin D factors. Am J Physiol. 1986;250:G369–G373. [PubMed: 2420210]

3.

Cross HS, Debiec H, Peterlik M. Mechanism and regulation of intestinal phosphate absorption. Miner Electrolyte Metab. 1990;16:115–124. [PubMed: 2250617]

4.

Marks J, Debnam ES, Unwin RJ. The role of the gastrointestinal tract in phosphate homeostasis in health and chronic kidney disease. Curr Opin Nephrol Hypertens. 2013;22:481–487. [PMC free article: PMC4196778] [PubMed: 23666413]

5.

Sabbagh Y, O’Brien SP, Song W, Boulanger JH, Stockmann A, Arbeeny C, Schiavi SC. Intestinal npt2b plays a major role in phosphate absorption homeostasis. J Am Soc Nephrol. 2009;20:2348–2358. [PMC free article: PMC2799172] [PubMed: 19729436]

6.

Debiec H, Lorenc R. Identification of Na+,Pi-binding protein in kidney and intestinal brush-border membranes. Biochem J. 1988;225:185–191. [PMC free article: PMC1135207] [PubMed: 3196312]

7.

Katai K, Miyamoto K, Kishida S, Segawa H, Nii T, Tankaka H, Tani Y, Arai H, Tatsumi S, Morita K, Taketani Y, Takeda E. Regulation of intestinal Na+-dependent phosphate co-transporters by a low phosphate diet and 1,25-dihydroxyvitamin D3. Biochem J. 1999;3:705–712. [PMC free article: PMC1220605] [PubMed: 10527952]

8.

Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J. Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci USA. 1998;95:14564–14569. [PMC free article: PMC24413] [PubMed: 9826740]

9.

Bai L, Collins JF, Ghishan FK. Cloning and characterization of a type III Na-dependent phosphate cotransporter from mouse intestine. Am J Physiol Cell Physiol. 2000;279:C1135–C1143. [PubMed: 11003594]

10.

Xu H, Bai L, Collins JF, Ghishan FK. Age-dependent regulation of rat intestinal type IIb sodium-phosphate cotransporter by 1,25-(OH)2 vitamin D3. Am J Physiol Cell Physiol. 2002;282:C487–C493. [PubMed: 11832333]

11.

Marks J, Debnam ES, Unwin RJ. Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol. 2009;299:F285–F296. [PubMed: 20534868]

12.

Candeal E, Caldas YA, Guillén N, Levi M, Sorribas V. Intestinal phosphate absorption is mediated by multiple transport systems in rats. Am J Physiol Gastrointest Liver Physiol. 2017;312(4):G355–G366. [PubMed: 28232455]

13.

Mizgala CL, Quamme GA. Renal handling of phosphate. Physiol Rev. 1985;65:431–466. [PubMed: 3885273]

14.

Harris CA, Sutton RA, Dirks JH. Effects of hypercalcemia on tubular calcium and phosphate ultrafilterability and tubular reabsorption in the rat. Am J Physiol. 1977;233:F201–F206. [PubMed: 910914]

15.

Knox FG, Haramati A. Renal regulation of phosphate excretion. In: Seldin DW, Giebisch G, eds. The Kidney: Physiology and Pathophysiology. New York: Raven Press; 1981; 1381.

16.

Berndt TJ, Knox FG. Proximal tubule site of inhibition of phosphate reabsorption by calcitonin. Am J Physiol. 1984;246:F927–F930. [PubMed: 6331178]

17.

Legati A, Giovannini D, Nicolas G, Lopez-Sanchez U, Quintans B, Oliveira JR, Sears RL, Ramos EM, Spiteri E, Sobrido MJ, Carracedo A, Castro-Fernandez C, Cubizolle S, Fogel BL, Goizet C, Jen JC, Kirdlarp S, Lang AE, Miedzybrodzka Z, Mitarnun W, Paucar M, Paulson H, Pariente J, Richard AC, Salins NS, Simpson SA, Striano P, Svenningsson P, Tison F, Unni VK, Vanakker O, Wessels MW, Wetchaphanphesat S, Yang M, Boller F, Campion D, Hannequin D, Sitbon M, Geschwind DH, Battini JL, Coppola G. Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export. Nat Genet. 2015;47(6):579–581. [PMC free article: PMC4516721] [PubMed: 25938945]

18.

Ansermet C, Moor MB, Centeno G, Auberson M, Hu DZ, Baron R, Nikolaeva S, Haenzi B, Katanaeva N, Gautschi I, Katanaev V, Rotman S, Koesters R, Schild L, Pradervand S, Bonny O, Firsov D. Renal fanconi syndrome and hypophosphatemic rickets in the absence of xenotropic and polytropic retroviral receptor in the nephron. J Am Soc Nephrol. 2017;28(4):1073–1078. [PMC free article: PMC5373462] [PubMed: 27799484]

19.

Schwab SJ, Klahr S, Hammerman MR. Na+ gradient-dependent Pi uptake in basolateral membrane vesicles from dog kidney. Am J Physiol. 1984;246:F633–F639. [PubMed: 6720970]

20.

Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, Biber J, Forster IC. The Na+-Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am J Physiol Renal Physiol. 2009;296(4):F691–F699. [PMC free article: PMC2670642] [PubMed: 19073637]

21.

Murer H, Forster I, Hernando N, Lambert G, Traebert M, Biber J. Post-transcriptional regulation of the proximal tubule Na+-phosphate transporter type II in response to PTH and dietary phosphate. Am J Physiol Renal Physiol. 1999;277:F676–F684. [PubMed: 10564230]

22.

Murer H, Forster I, Hilfiker H, Pfister M, Kaissling B, Lotscher M, Biber J. Cellular/molecular control of renal Na+/Pi cotransport. Kidney Int. 1988;65:S2–S10. [PubMed: 9551425]

23.

Bacconi A, Virkki LV, Biber J, Murer H, Forster IC. Renouncing electroneutrality is not free of charge: switching on electrogenicity in a Na+-coupled phosphate cotransporter. Proc Natl Acad Sci USA. 2005;102(35):12606–12611. [PMC free article: PMC1194947] [PubMed: 16113079]

24.

Oberbauer R, Schreiner GF, Biber J, Murer H, Meyer TW. In vivo suppression of the renal Na+/Pi cotransporter by antisense oligonucleotides. Proc Natl Acad Sci USA. 1996;93:4903–4906. [PMC free article: PMC39377] [PubMed: 8643501]

25.

Beck I, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS. Targeted inactivation of Npt 2 in mice leads to severe renal phosphate wasting, hypercalciuria and skeletal annomalies. Proc Natl Acad Sci USA. 1998;95:5372–5377. [PMC free article: PMC20268] [PubMed: 9560283]

26.

Hoag HH, Gauthier C, Martel I, Tenenhouse HS. Effects of Npt2 gene ablation and low Pi-diet on renal Na+-phosphate cotransport and cotransporter gene expression. J Clin Invest. 1999;104:679–686. [PMC free article: PMC408436] [PubMed: 10491403]

27.

Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan KN, Tenenhouse HS, Jüppner H. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Gen. 2006;78:179–192. [PMC free article: PMC1380228] [PubMed: 16358214]

28.

Biber J, Hernando N, Forster I. Phosphate transporters and their function. Annu Rev Physiol. 2013;75:535–550. [PubMed: 23398154]

29.

Lötscher M, Scarpetta Y, Levi M, Halaihel N, Wang H, Zajicek HK, Biber J, Murer H, Kaissling B. Rapid downregulation of rat renal Na/P(i) cotransporter in response to parathyroid hormone involves microtubule rearrangement. J Clin Invest. 1999;104(4):483–494. [PMC free article: PMC408517] [PubMed: 10449440]

30.

Wagner CA, Hernando N, Forster IC, Biber J. The SLC34 family of sodium-dependent phosphate transporters. Pflugers Arch. 2014;466:139–153. [PubMed: 24352629]

31.

Segawa H, Yamanaka S, Ito M, Kuwahata M, Shono M, Yamamoto T, Miyamoto K. Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet. Am J Physiol Renal Physiol. 2005;288:F587–F596. [PubMed: 15561978]

32.

Foster IC, Hernando N, Biber J, Murer H. Proximal tubular handling of phosphate: a molecular perspective. Kidney Int. 2006;70:1548–1559. [PubMed: 16955105]

33.

Farrow EG, White KE. Recent advances in renal phosphate handling. Nat Rev Nephrol. 2010;6(4):207–217. [PMC free article: PMC3050486] [PubMed: 20177401]

34.

Antoniucci DM, Yamash*ta T, Portale AA. Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J Clin Endocrinol Metab. 2006;91:3144–3149. [PubMed: 16735491]

35.

Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, f*ckumoto S, Yamash*ta T. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444:770–774. [PubMed: 17086194]

36.

Belov AA, Mohammadi M. Molecular mechanisms of fibroblast growth factor signaling in physiology and pathology. Cold Spring Harb Perspect Biol. 2013;5:6. [PMC free article: PMC3660835] [PubMed: 23732477]

37.

Andrukhova O, Zeitz U, Goetz R, Mohammadi M, Lanske B, Erben RG. FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway. Bone. 2012;51:621–628. [PMC free article: PMC3419258] [PubMed: 22647968]

38.

Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, Takeuchi Y, Fujita T, f*ckumoto S, Yamash*ta T. Cloning and characterization of FGF-23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA. 2001;98:6500–6505. [PMC free article: PMC33497] [PubMed: 11344269]

39.

Razzaque MS, Sitara D, Taguchi T, St-Arnaud R, Lanske B. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J. 2006;6:720–722. [PMC free article: PMC2899884] [PubMed: 16436465]

40.

Aono Y, Yamazaki Y, Yasutake J, Kawata T, Hasegawa H, Urakawa I, Fujita T, Wada M, Yamash*ta T, f*ckumoto S, Shimada T. Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J Bone Miner Res. 2009 Nov;24(11):1879–88. [PubMed: 19419316]

41.

Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, Shawkat Razzaque M, Rosenblatt KP, Baum MG, Kuro-O M, Moe OW. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010;24(9):3438–3450. [PMC free article: PMC2923354] [PubMed: 20466874]

42.

Brownstein CA, Adler F, Nelson-Williams C, Iijma J, Imura A, Nabehsima Y, Carpenter TO, Lifton RP. A translocation causing increased α–Klotho level results in hypophosphatemic rickets and hyperparathyroidism. PNAS USA. 2008;105:3455–3460. [PMC free article: PMC2265125] [PubMed: 18308935]

43.

Grabner A, Amaral AP, Schramm K, Singh S, Sloan A, Yanucil C, Li J, Shehadeh LA, Hare JM, David V, Martin A, Fornoni A, Di Marco GS, Kentrup D, Reuter S, Mayer AB, Pavenstädt H, Stypmann J, Kuhn C, Hille S, Frey N, Leifheit-Nestler M, Richter B, Haffner D, Abraham R, Bange J, Sperl B, Ullrich A, Brand M, Wolf M, Faul C. Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab. 2015;22(6):1020–32. [PMC free article: PMC4670583] [PubMed: 26437603]

44.

Rowe PS, de Zoysa PA, Dong R, Wang HR, White KE, Econs MH, Oudet CL. MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia. Genomics. 2000;67:54–68. [PubMed: 10945470]

45.

Berndt T, Craig TA, Howe AE, Vassiliadis J, Reczek D, Finnegan R, Jan de Beur SM, Schiavi SC, Kumar R. Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent. J Clin Invest. 2003;112:785–794. [PMC free article: PMC182208] [PubMed: 12952927]

46.

Wagner GF, Dimattia GE. The stanniocalcin family of proteins. J Exp Zoolog, A Comp Exp Biol. 2006;305:769–780. [PubMed: 16902962]

47.

Carpenter TO, Ellis BK, Insogna KL, Philbrick WM, Sterpka J, Shimkets R. FGF7: an inhibitor of phosphate transport derived from oncogenic osteomalacia-causing tumors. J Clin Endocrinol Metab. 2005;90:1012–1020. [PubMed: 15562028]

48.

Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell ... and more. Endocr Rev. 2013;34:658–690. [PMC free article: PMC3785641] [PubMed: 23612223]

49.

Murali SK, Andrukhova O, Clinkenbeard EL, White KE, Erben RG. Excessive osteocytic Fgf23 secretion contributes to pyrophosphate accumulation and mineralization defect in Hyp mice. PLoS Biol. 2016;14(4):e1002427. [PMC free article: PMC4818020] [PubMed: 27035636]

50.

Hoac B, Østergaard M, Wittig NK, Boukpessi T, Buss DJ, Chaussain C, Birkedal H, Murshed M, McKee MD. Genetic ablation of osteopontin in osteomalacic Hyp mice partially rescues the deficient mineralization without correcting hypophosphatemia. J Bone Miner Res. 2020;35(10):2032–2048. [PubMed: 32501585]

51.

Bai X, Miao D, Goltzman D, Karaplis AC. Early lethality in hyp mice with targeted deletion of Pth gene. Endocrinology. 2007;148(10):4974–83. [PubMed: 17615144]

52.

Carpenter TO, Olear EA, Zhang JH, Ellis BK, Simpson CA, Cheng D, Gundberg CM, Insogna KL. Effect of paricalcitol on circulating parathyroid hormone in X-linked hypophosphatemia: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab. 2014;99(9):3103–11. [PMC free article: PMC4154090] [PubMed: 25029424]

53.

Lanske B, Razzaque MS. Molecular interactions of FGF23 and PTH in phosphate regulation. Kidney Int. 2014;86(6):1072–4. [PMC free article: PMC4246422] [PubMed: 25427080]

54.

Sabbagh Y, Carpenter TO, Demay M. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Nat Acad Sci. 2005;102:9637–9642. [PMC free article: PMC1172249] [PubMed: 15976027]

55.

Glimcher MJ . In: Aurbach GD ed. Handbook of physiology: endocrinology, parathyroid gland, sect 7, vol 7. Washington, D.C.: American Physiological Society. 1996; 21-32.

56.

Bordier PJ, Tun Chot S. Quantitative histology of metabolic bone disease. Clin Endocrinol Metab. 1972;1:197–215.

57.

Frame B, Parfitt AM. Osteomalacia: current concepts. Ann Intern Med. 1978;89:966–982. [PubMed: 363010]

58.

Mumm S, Huskey M, Cajic A, Wollberg V, Zhang F, Madson KL, Wenkert D, McAlister WH, Gottesman GS, Whyte MP. PHEX 3'-UTR c.*231A>G near the polyadenylation signal is a relatively common, mild, American mutation that masquerades as sporadic or X-linked recessive hypophosphatemic rickets. J Bone Miner Res. 2015;30(1):137–43. [PubMed: 25042154]

59.

Harrison HE, Harrison HC, Lifsh*tz F, Johnson AD. Growth disturbance in hereditary hypophosphatemia. Am J Dis Child. 1996;112:290–297. [PubMed: 5925614]

60.

Mao M, Carpenter TO, Whyte MP, Skrinar A, Chen CY, San Martin J, Rogol AD. Growth curves for children with X-linked Hypophosphatemia. J Clin Endocrinol Metab. 2020;105:32439. [PMC free article: PMC7448934] [PubMed: 32721016]

61.

Williams TF, Winters RW. Familial (hereditary) vitamin D-resistant rickets with hypophosphatemia. In: Stanbury JB, Wyngaarden JB, Fredrickson DS, eds. The metabolic basis of inherited disease. 3rd ed. New York: McGraw-Hill. 1983; 1465-1485.

62.

Tracey WE, Campbell RA. Dentofacial development in children with vitamin D resistant rickets. J Am Dent Assoc. 1968;76:1026–1031. [PubMed: 5243735]

63.

Shields ED, Scriver CR, Reade T, Fujiwara TM, Morgan K, Ciampi A, Schwartz S. X-linked hypophosphatemia: the mutant gene is expressed in teeth as well as in kidney. Am J Human Gen. 1990;46:434–442. [PMC free article: PMC1683613] [PubMed: 2155529]

64.

Marie PJ, Glorieux FH. Relation between hypomineralized periosteocytic lesions and bone mineralization in vitamin D-resistant rickets. Calcif Tissue Int. 1983;35:443–448. [PubMed: 6311372]

65.

Polisson RP, Martinex S, Khoury M, Harrell RM, Lyles KW, Friedman N, Harrelson JM, Reisner E, Drezner MK. Calcificantion of entheses associated with X-linked hypophosphatemic osteomalacia. N Engl J Med. 1985;313:1–6. [PubMed: 4000222]

66.

Pierce DS, Wallace WM, Herndon CH. Long term treatment of vitamin D-resistant rickets. J Bone Joint Surg Am. 1964;46:978–997. [PubMed: 14192509]

67.

Connor J, Olear EA, Insogna KL, Katz L, Baker SD, Kaur RD, Simpson CA, Sterpka J, Dubrow R, Zhang JH, Carpenter TO. Conventional therapy in adults with X-linked hypophosphatemia: effects on enthesopathy and dental disease. J Clin Endocrinol Metab. 2015;100:3625–3632. [PMC free article: PMC4596038] [PubMed: 26176801]

68.

Steindijk R. On the pathogenesis of vitamin D resistant rickets and primary vitamin D resistant rickets. Helv Paediatr Acta. 1962;17:65–85. [PubMed: 13916499]

69.

Stickler GB. External calcium and phosphorus balances in vitamin D-resistant rickets. J Pediatr. 1963;63:942–948. [PubMed: 14071048]

70.

Drezner MK, Lyles KW, Haussler MR, Harrelson JM. Evaluation of a role for 1,25-dihydroxyvitamin D3 in the pathogenesis and treatment of X-linked hypophosphatemic rickets and osteomalacia. J Clin Invest. 1980;66:1020–1032. [PMC free article: PMC371539] [PubMed: 6253520]

71.

Haddad JG, Chyu KJ, Hahn TJ, Stamp TCB. Serum concentrations of 25-hydroxyvitamin D in sex linked hypophosphatemic vitamin D-resistant rickets. J Lab Clin Med. 1973;81:22–27. [PubMed: 4344923]

72.

Tenenhouse HS. Abnormal renal mitochondrial 25-hydroxyvitamin D3-1-hydroxylase activity in the vitamin D and calcium deficient X-linked Hyp mouse. Endocrinology. 1983;113:816–818. [PubMed: 6683624]

73.

Roy S, Martel J, Ma S, Tenenhouse HS. Increased renal 25-hydroxyvitamin D3-24-hydroxylase messenger ribonucleic acid and immunoreactive protein in phosphate-deprived Hyp mice: a mechanism for accelerated 1,25-dihydroxyvitamin D3 catabolism in X-linked hypophosphatemic rickets. Endocrinology. 1994;134:1761–1767. [PubMed: 8137741]

74.

Winters RW, Graham JB, Williams TF, McFalls VW, Burnett CH. A genetic study of familial hypophosphatemia and vitamin D-resistant rickets with a review of the literature. Medicine (Baltimore). 1958;37:97–142. [PubMed: 13565132]

75.

Burnett CH, Dent CE, Harper C, Warland BJ. Vitamin D resistant rickets: analysis of 24 pedigrees and hereditary and sporadic cases. Am J Med. 1964;36:222–232. [PubMed: 14124689]

76.

Francis F, Henning S, Korn B, Reinhardt R, de Jong P, Poustka A, Lehrach H, Rowe PSN, Goulding JN, Summerfield T, Mountford R, Read AP, Popowska E, Pronicka E, Davies KE, O’Riordan JLH, Econs MJ, Nesbitt T, Drezner MK, Oudet C, Hanauer A, Strom TM, Meindl A, Lorenz B, Cagnoli M, Mohnike KL, Murken J, Meitinger T. A gene (PEX) with hom*ologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Genet. 1995;11:130–136. [PubMed: 7550339]

77.

Lipman ML, Dibyendu P, Hugh PJ, Bennett JE, Henderson ES, Yingnian S, Goltzman D, Daraplis AC. Cloning of human Pex cDNA: expression subcellular localization and endopeptidase activity. J Biol Chem. 1998;273:13729–13737. [PubMed: 9593714]

78.

Thompson DL, Roche PC, Drezner MK, Salisbury JL, Sabbagh Y, Tenenhouse HS, Grande JP, Poeschlia EM, Kumar R. Ontogeny of PHEX/PEX expression in the mouse embryo and studies on the subcellular localization of PHEX/PEX in osteoblasts. J Bone Miner Res. 2002;17:311–320. [PubMed: 11811562]

79.

Sabbagh Y., Boileau G., Campos M., Carmona A. K., Tenenhouse H. S. Structure and function of disease-causing missense mutations in the PHEX gene. TheJournal of Clinical Endocrinology and Metabolism. 2003;88(5):2213–2222. [PubMed: 12727977]

80.

Sabbagh Y., Boileau G., DesGroseillers L., Tenenhouse H. S. Disease-causing missense mutations in the PHEX gene interfere with membrane targeting of the recombinant protein. Human Molecular Genetics. 2001;10(15):1539–1546. [PubMed: 11468271]

81.

Beck L, Soumounou Y, Martel J, Krishnamurthy G, Gauthier C, Goodyer CG, Tenenhouse HS. Pex/PEX tissue distribution and evidence for a deletion in the 3' region of the Pex gene in X-linked hypophosphatemic mice. J Clin Invest. 1997;99:1200–1209. [PMC free article: PMC507933] [PubMed: 9077527]

82.

Zoidis E, Zapf J, Schmid C. Phex cDNA cloning from rat bone and studies on phex mRNA expression: tissue-specificity, age-dependency, and regulation by insulin-like growth factor (IGF) I in vivo. Mol Cell Endocrinol. 2000;168:41–51. [PubMed: 11064151]

83.

Ruchon AF, Tenenhouse HS, Marcinkiewicz M, Siegfried G, Aubin JE, DesGroseillers L, Crine P, Boileau G. Developmental expression and tissue distribution of Phex protein: effect of the Hyp mutation and relationship to bone markers. J Bone Miner Res. 2000;15:1440–1450. [PubMed: 10934642]

84.

Ruchon AF, Marcinkiewicz M, Siegfried G, Tenenhouse HS, DesGroseillers L, Crine P, Boileau G. Pex mRNA is localized in developing mouse osteoblasts and odontoblasts. J Histochem Cytochem. 1998;46:459–468. [PubMed: 9524191]

85.

Sarafrazi S, Daugherty SC, Miller N, Boada P. Carpenter TO, Chunn L, Dill K, Econs MJ, Eisenbeis S, Imel EA, Johnson B, Kiel MJ, Krolczk S, Ramesan P, Truty R, Sabbagh Y. Novel PHEX gene locus-specific database: Comprehensive characterization of vast number of variants associated with X-Linked Hypophosphatemia (XLH). HumanMutation. 2022;43(2):143–157. [PMC free article: PMC9299612] [PubMed: 34806794]

86.

Liu S, Guo R, Tu Q, Quarles LD. Overexpression of phex in osteoblasts fails to rescue the hyp-mouse phenotype. J Biol Chem. 2002;277:3686–3697. [PubMed: 11713245]

87.

Bai X, Miao D, Panda D, Grady S, McKee MD, Goltzman D, Karaplis AC. Partial rescue of the hyp phenotype by osteoblast-targeted PHEX (phosphate-regulating gene with hom*ologies to endopeptidases on the X chromosome) expression. Mol Endocrinol. 2002;16:2913–2925. [PubMed: 12456809]

88.

Boskey A, Frank A, Fujimoto Y, Spevak L, Verdelis K, Ellis B, Philbrick W, Carpenter T. The PHEX transgene corrects mineralization defects in 9-month-old hypophosphatemic mice. Calcif Tiss Int. 2009;84:126–137. [PMC free article: PMC2657219] [PubMed: 19082853]

89.

David V, Martin A, Hedge AM, Drezner MK, Rowe PS. ASARM peptides: PHEX-dependent and -independent regulation of serum phosphate. Am J Physiol Renal Physiol. 2011;300(3):F783–91. [PMC free article: PMC3064126] [PubMed: 21177780]

90.

Morgan JM, Hawley WL, Chenoweth AI, Retan WJ, Diethelm AG. Renal transplantation in hypophosphatemia with vitamin D-resistant rickets. Arch Intern Med. 1974;134(3):549–52. [PubMed: 4369139]

91.

Meyer RA Jr, Meyer MH, Gray RW. Parabiosis suggests a humoral factor is involved in X-linked hypophosphatemia in mice. J Bone Miner Res. 1989;4:493–500. [PubMed: 2816498]

92.

Nesbitt T, Coffman TM, Griffiths R, Drezner MK. Cross transplantation of kidneys in normal and hyp-mice: evidence that the hyp-mouse phenotype is unrelated to an intrinsic renal defect. J Clin Invest. 1992;89:1453–1459. [PMC free article: PMC443015] [PubMed: 1569185]

93.

Tenenhouse HS, Beck L. Renal Na+-P cotransporter gene expression in X-linked Hyp and Gy mice. Kidney Int. 1996;49:1027–1032. [PubMed: 8691720]

94.

Tenenhouse HS, Martel J, Biber J, Murer H. Effect of P(i) restriction on renal Na(+)-P(i) cotransporter mRNA and immunoreactive protein in X-linked Hyp mice. Am J Physiol. 1995;268:F1062–F1069. [PubMed: 7611447]

95.

Tenenhouse HS, Martel J, Gauthier C, Segawa H, Miyamoto K. Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c. Am J Physiol Renal Physiol. 2003;285(6):F1271–F1278. [PubMed: 12952859]

96.

White KE, Jonsson KB, Carn G, Hampson G, Spector TD, Mannstadt M, Lorenz-Depiereux B, Miyauchi A, Yang IM, Ljunggren O, Meitinger T, Strom TM, Jüppner H, Econs MJ. The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J Clin Endocrinol Metab. 2001;86:497–500. [PubMed: 11157998]

97.

The ADHR Consortium. Autosomal dominant hypophosphatemic rickets is associated with mutations in FGF-23. Nat Genet. 2000;26:345–348. [PubMed: 11062477]

98.

Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38:1310–1315. [PMC free article: PMC1839871] [PubMed: 17033621]

99.

Levy-Litan V, Hershkovitz E, Avizov L, et al. Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet. 2010;86(2):273–278. [PMC free article: PMC2820183] [PubMed: 20137772]

100.

Lorenz-Depiereux B, Schnabel D, Tiosano D, Hausler G, Strom TM. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet. 2010;86(2):267–272. [PMC free article: PMC2820166] [PubMed: 20137773]

101.

Rutsch F, Ruf N, Vaingankar S, Toliat MR, Suk A, Höhne W, Schauer G, Lehmann M, Roscioli T, Schnabel D, Epplen JT, Knisely A, Superti-Furga A, McGill J, Filippone M, Sinaiko AR, Vallance H, Hinrichs B, Smith W, Ferre M, Terkeltaub R, Nürnberg P. Mutations in ENPP1 are associated with ‘idiopathic’ infantile arterial calcification. Nat Genet. 2003;34(4):379–381. [PubMed: 12881724]

102.

Ferreira CR, Hackbarth ME, Ziegler SG, Pan KS, Roberts MS, Rosing DR, Whelpley MS, Bryant JC, Macnamara EF, Wang S, Müller K, Hartley IR, Chew EY, Corden TE, Jacobsen CM, Holm IA, Rutsch F, Dikoglu E, Chen MY, Mughal MZ, Levine MA, Gafni RI, Gahl WA. Prospective phenotyping of long-term survivors of generalized arterial calcification of infancy (GACI). Genet Med. 2021;23(2):396–407. [PMC free article: PMC7867608] [PubMed: 33005041]

103.

Yoskida T, Fujimori T, Nabeshima Y. Mediation of unusually high concentrations of 1,25-dihydroxyvitamin D in hom*ozygous klotho mutant mice by increased expression of renal 1 -hydroxylase gene. Endocrinology. 2002;143:683–689. [PubMed: 11796525]

104.

Brownstein C, Zhang J, Stillman A, Ellis B, Troiano N, Adams DJ, Gundberg CM, Lifton RP, Carpenter TO. Increased bone volume and correction of HYP mouse hypophosphatemia in the Klotho/HYP mouse. Endocrinology. 2010;151:492–501. [PMC free article: PMC2817612] [PubMed: 19952276]

105.

Smith RC, O'Bryan LM, Farrow EG, Summers LJ, Clinkenbeard EL, Roberts JL, Cass TA, Saha J, Broderick C, Ma YL, Zeng QQ, Kharitonenkov A, Wilson JM, Guo Q, Sun H, Allen MR, Burr DB, Breyer MD, White KE. Circulating αKlotho influences phosphate handling by controlling FGF23 production. J Clin Invest. 2012;122:4710–4715. [PMC free article: PMC3533557] [PubMed: 23187128]

106.

Ichikawa S, Sorenson AH, Austin AM, Mackenzie DS, Fritz TA, Moh A, Hui SL, Econs MJ. Ablation of the Galnt3 gene leads to low-circulating intact fibroblast growth factor 23 (Fgf23) concentrations and hyperphosphatemia despite increased Fgf23 expression. Endocrinology. 2009;150(6):2543–2550. [PMC free article: PMC2689800] [PubMed: 19213845]

107.

Topaz O, Shurman DL, Bergman R, Indelman M, Ratajczak P, Mizrachi M, Khamaysi Z, Behar D, Petronius D, Friedman V, Zelikovic I, Raimer S, Metzker A, Richard G, Sprecher E. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat Genet. 2004;36:579–81. [PubMed: 15133511]

108.

Ichikawa S, Baujat G, Seyahi A, Garoufali AG, Imel EA, Padgett LR, Austin AM, Sorenson AH, Pejin Z, Topouchian V, Quartier P, Cormier-Daire V, Dechaux M, Malandrinou FCh, Singhellakis PN, Le Merrer M, Econs MJ. Clinical variability of familial tumoral calcinosis caused by novel GALNT3 mutations. Am J Med Genet A. 2010;152A:896–903. [PMC free article: PMC3392654] [PubMed: 20358599]

109.

Tagliabracci VS, Engel JL, Wiley SE, Xiao J, Gonzalez DJ, Nidumanda Appaiah H, Koller A, Nizet V, White KE, Dixon JE. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc Natl Acad Sci U S A. 2014;111:5520–5525. [PMC free article: PMC3992636] [PubMed: 24706917]

110.

Rafaelsen SH, Raeder H, fa*gerheim AK, Knappskog P, Carpenter TO, Johansson S, Bjerknes R. Exome sequencing reveals FAM20c mutations associated with fibroblast growth factor 23-related hypophosphatemia, dental anomalies, and ectopic calcification. J Bone Miner Res. 2013;28:1378–1385. [PubMed: 23325605]

111.

Larsson T, Yu X, Davis SI, Draman MS, Mooney SD, Cullen MJ, White KE. A novel recessive mutation in fibroblast growth factor-23 causes familial tumoral calcinosis. J Clin Endocrinol Metab. 2005;90:2424–2427. [PubMed: 15687325]

112.

Ichikawa S, Imel EA, Kreiter ML, Yu X, Mackenzie DS, Sorenson AH, Goetz R, Mohammadi M, White KE, Econs MJ. A hom*ozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest. 2007;117(9):2684–2691. [PMC free article: PMC1940239] [PubMed: 17710231]

113.

Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390:45–51. [PubMed: 9363890]

114.

Glorieux FH, Marie PJ, Pettifor JM, Delvin EE. Bone response to phosphate salts, ergocalciferol, and calcitriol in hypophosphatemic vitamin D-resistant rickets. N Engl J Med. 1980;303:1223–1231. [PubMed: 6252463]

115.

Costa T, Marie P, Scriver CR, Cole DEC, Reade TM, Norgrady B, Glorieux FH, Delvin EE. X-linked hypophosphatemia: effect of calcitriol on renal handling of phosphate, serum phosphate and bone mineralization. J Clin Endocrinol Metab. 1981;52:463–477. [PubMed: 6893992]

116.

Harrell RM, Lyles KW, Harrelson JM, Freedman NE, Drezner MK. Healing of bone disease in X-linked hypophosphatemic rickets/osteomalacia: induction and maintenance with phosphorus and calcitriol. J Clin Invest. 1985;75:1858–1864. [PMC free article: PMC425542] [PubMed: 3839245]

117.

Baroncelli GI, Bertelloni S, Ceccarelli C, Saggese G. 2001 Effect of growth hormone treatment on final height, phosphate metabolism, and bone mineral density in children with X-linked hypophosphatemic rickets. J Pediatr. 1985;138:236–243. [PubMed: 11174622]

118.

Haffner D, Wuhl E, Blum WF, Schaefer F, Mehls O. Disproportionate growth following long-term growth hormone treatment in short children with X-linked hypophosphataemia. Eur J Pediatr. 1995;154:610–613. [PubMed: 7588957]

119.

Zivicnjak M, Schnabel D, Staude H, et al. Three-Year Growth Hormone Treatment in Short Children with X-Linked Hypophosphatemic Rickets: Effects on Linear Growth and Body Disproportion. J Clin Endocrinol Metab. 2011;96(12):E2097–E2105. [PubMed: 21994957]

120.

Smith S, Remmington T. Recombinant growth hormone therapy for X-linked hypophosphatemia in children. Cochrane Database Syst Rev. 2021 Oct 7;10(10):CD004447. [PMC free article: PMC8496964] [PubMed: 34618915]

121.

Sullivan W, Carpenter TO, Glorieux F, Travers R, Insogna K. A prospective trial of phosphate and 1,25-dihydroxyvitamin D3 therapy on symptomatic adults with X-linked hypophosphatemic rickets. J Clin Endocrinol Metab. 1992;75:879–885. [PubMed: 1517380]

122.

Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL. A clinician's guide to X-linked hypophosphatemia. J Bone Miner Res. 2011;26(7):1381–1388. [PMC free article: PMC3157040] [PubMed: 21538511]

123.

Haffner D, Emma F, Eastwood DM, Duplan MB, Bacchetta J, Schnabel D, Wicart P, Bockenhauer D, Santos F, Levtchenko E, Harvengt P, Kirchhoff M, Di Rocco F, Chaussain C, Brandi ML, Savendahl L, Briot K, Kamenicky P, Rejnmark L, Linglart A. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat Rev Nephrol. 2019 Jul;15(7):435–455. [PMC free article: PMC7136170] [PubMed: 31068690]

124.

Laurent MR, De Schepper J, Trouet D, Godefroid N, Boros E, Heinrichs C, Bravenboer B, Velkeniers B, Lammens J, Harvengt P, Cavalier E, Kaux JF, Lombet J, De Waele K, Verroken C, van Hoeck K, Mortier GR, Levtchenko E, Vande Walle J. Consensus Recommendations for the Diagnosis and Management of X-Linked Hypophosphatemia in Belgium. Front Endocrinol (Lausanne). 2021 Mar 19;12:641543. doi: 10.3389/fendo.2021.641543. eCollection 2021. [PMC free article: PMC8018577] [PubMed: 33815294] [CrossRef]

125.

Carpenter TO, Imel EA, Ruppe MD, Weber TJ, Klausner MA, Wooddell MM, Kawakami T, Ito T, Zhang X, Humphrey J, Insogna KL, Peaco*ck M. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J Clin Invest. 2014;124:1587–1597. [PMC free article: PMC3973088] [PubMed: 24569459]

126.

Imel EA, Zhang X, Ruppe MD, Weber TJ, Klausner MA, Ito T, Vergeire M, Humphrey JS, Glorieux FH, Portale AA, Insogna K, Peaco*ck M, Carpenter TO. Prolonged correction of serum phosphorus in adults with X-linked hypophosphatemia using monthly doses of KRN23. J Clin Endocrinol Metab. 2015;100:2565–2573. [PMC free article: PMC4495171] [PubMed: 25919461]

127.

Carpenter TO, Whyte MP, Imel EA, Boot AM, Högler W, Linglart A, Padidela R, Van't Hoff W, Mao M, Chen CY, Skrinar A, Kakkis E, San Martin J, Portale AA. Burosumab Therapy in Children with X-Linked Hypophosphatemia. N Engl J Med. 2018 May 24;378(21):1987–1998. [PubMed: 29791829]

128.

Whyte MP, Carpenter TO, Gottesman GS, Mao M, Skrinar A, San Martin J, Imel EA. Efficacy and safety of burosumab in children aged 1-4 years with X-linked hypophosphataemia: a multicentre, open-label, phase 2 trial. Lancet Diabetes Endocrinol. 2019 Mar;7(3):189–199. [PubMed: 30638856]

129.

Imel EA, Glorieux FH, Whyte MP, Munns CF, Ward LM, Nilsson O, Simmons JH, Padidela R, Namba N, Cheong HI, Pitukcheewanont P, Sochett E, Högler W, Muroya K, Tanaka H, Gottesman GS, Biggin A, Perwad F, Mao M, Chen CY, Skrinar A, San Martin J, Portale AA. Burosumab versus conventional therapy in children with X-linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial. Lancet. 2019 Jun 15;393(10189):2416–2427. [PMC free article: PMC7179969] [PubMed: 31104833]

130.

Insogna KL, Briot K, Imel EA, Kamenický P, Ruppe MD, Portale AA, Weber T, Pitukcheewanont P, Cheong HI, Jan de Beur S, Imanishi Y, Ito N, Lachmann RH, Tanaka H, Perwad F, Zhang L, Chen CY, Theodore-Oklota C, Mealiffe M, San Martin J, Carpenter TO. AXLES 1 Investigators. A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Trial Evaluating the Efficacy of Burosumab, an Anti-FGF23 Antibody, in Adults With X-Linked Hypophosphatemia: Week 24 Primary Analysis. J Bone Miner Res. 2018 Aug;33(8):1383–1393. [PubMed: 29947083]

131.

Insogna KL, Rauch F, Kamenický P, Ito N, Kubota T, Nakamura A, Zhang L, Mealiffe M, San Martin J, Portale AA. Burosumab Improved Histomorphometric Measures of Osteomalacia in Adults with X-Linked Hypophosphatemia: A Phase 3, Single-Arm, International Trial. J Bone Miner Res. 2019 Dec;34(12):2183–2191. [PMC free article: PMC6916280] [PubMed: 31369697]

132.

Linglart A, Imel EA, Whyte MP, Portale AA, Högler W, Boot AM, Padidela R, Van't Hoff W, Gottesman GS, Chen A, Skrinar A, Scott Roberts M, Carpenter TO. Sustained Efficacy and Safety of Burosumab, a Monoclonal Antibody to FGF23, in Children With X-Linked Hypophosphatemia. J Clin Endocrinol Metab. 2022 Feb 17;107(3):813–824. [PMC free article: PMC8851952] [PubMed: 34636899]

133.

Imel EA, Glorieux FH, Whyte MP, Munns CF, Ward LM, Nilsson O, Simmons JH, Padidela R, Namba N, Cheong HI, Pitukcheewanont P, Sochett E, Högler W, Muroya K, Tanaka H, Gottesman GS, Biggin A, Perwad F, Mao M, Chen CY, Skrinar A, San Martin J, Portale AA. Burosumab versus conventional therapy in children with X-linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial. Lancet. 2019 Jun 15;393(10189):2416–2427. [PMC free article: PMC7179969] [PubMed: 31104833]

134.

Harrison HE, Harrison HC. Rickets and osteomalacia. In: disorders of calcium and phosphate metabolism in childhood and adolescence. Philadelphia: WB Saunders. 1979; 141-256. [PubMed: 491744]

135.

Econs M, McEnery P. Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate wasting disorder. J Clin Endocrinol Metab. 1997;82:674–681. [PubMed: 9024275]

136.

Imel EA, Hui SL, Econs MJ. FGF23 concentrations vary with disease status in autosomal dominant hypophosphatemic rickets. J Bone Miner Res. 2007;22(4):520–526. [PubMed: 17227222]

137.

Imel EA, Peaco*ck M, Gray AK, Padgett LR, Hui SL, Econs MJ. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans. J Clin Endocrinol Metab. 2011;96:3541–3549. [PMC free article: PMC3205884] [PubMed: 21880793]

138.

Kapelari K, Köhle J, Kotzot D, Högler W. Iron supplementation associated with loss of phenotype in autosomal dominant hypophosphatemic rickets. J Clin Endocrinol Metab. 2015;100(9):3388–92. [PubMed: 26186302]

139.

Lorenz-Depiereux B, Bastepe M, Benet-Pages A, Amyere M, Wagenstaller J, Muller-Barth U, Badenhoop K, Kaiser SM, Rittmaster RS, Shlossberg AH, Olivares JL, Loris C, Ramos FJ, Glorieux F, Vikkula M, Jüppner H, Strom TM. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet. 2006;38:1248–1250. [PMC free article: PMC5942547] [PubMed: 17033625]

140.

Rutsch F, Böyer P, Nitschke Y, Ruf N, Lorenz-Depierieux B, Wittkampf T, Weissen-Plenz G, Fischer RJ, Mughal Z, Gregory JW, Davies JH, Loirat C, Strom TM, Schnabel D, Nürnberg P, Terkeltaub R. GACI study group hypophosphatemia, hyperphosphaturia, and bisphosphonate treatment are associated with survival beyond infancy in generalized arterial calcification of infancy. Circ Cardiovasc Genet. 2008;1(2):133–140.

141.

Ferreira CR, Ziegler SG, Gupta A, Groden C, Hsu KS. Treatment of hypophosphatemic rickets in generalized arterial calcification of infancy (GACI) without worsening of vascular calcification. Am J Med Genet A. 2016;170A(5):1308–11. [PMC free article: PMC4833596] [PubMed: 26857895]

142.

Bowe AE, Finnegan R, Jan de Beur SM, Cho J, Levine MA, Kumar R, Schiavi SC. FGF-23 inhibits renal tubular P transport and is a PHEX substrate. Biochem Biophys Res Commun. 2001;284:977–981. [PubMed: 11409890]

143.

Breer S, Brunkhorst T, Beil FT, Peldschus K, Heiland M, Klutmann S, Barvencik F, Zustin J, Gratz KF, Amling M. 68Ga DOTA-TATE PET/CT allows tumor localization in patients with tumor-induced osteomalacia but negative 111In-octreotide SPECT/CT. Bone. 2014;64:222–227. [PubMed: 24769333]

144.

El-Maouche D, Sadowski SM, Papadakis GZ, Guthrie L, Cottle-Delisle C, Merkel R, Millo C, Chen CC, Kebebew E, Collins MT. 68Ga-DOTATATE for Tumor Localization in Tumor-Induced Osteomalacia. J Clin Endocrinol Metab. 2016;101(10):3575–3581. [PMC free article: PMC5052344] [PubMed: 27533306]

145.

Andreopoulou P, Dumitrescu CE, Kelly MH, Brillante BA, Cutler Peck CM, Wodajo FM, Chang R, Collins MT. Selective venous catheterization for the localization of phosphaturic mesenchymal tumors. J Bone Miner Res. 2011;26:1295–1302. [PMC free article: PMC3179290] [PubMed: 21611969]

146.

Jan De Beur SM, Finnegan RB, Vassiliadis J, Cook B, Barberio D, Estes S, Manavalan P, Petroziello J, Madden SL, Cho JY, Kumar R, Levine MA, Schiavi SC. Tumors associated with oncogenic osteomalacia express genes important in bone and mineral metabolism. J Bone Miner Res. 2002;17:1102–1110. [PubMed: 12054166]

147.

Xiao L, Naganawa T, Lorenzo J, Carpenter TO, Coffin JD, Hurley MM. Nuclear isoforms of fibroblast growth factor 2 are novel inducers of hypophosphatemia via modulation of FGF23 and Klotho. J Biol Chem. 2010;285:2843–2846. [PMC free article: PMC2807337] [PubMed: 19933269]

148.

Lee JC, Jeng YM, Su SY, Wu CT, Tsai KS, Lee CH, Lin CY, Carter JM, Huang JW, Chen SH, Shih SR, Mariño-Enríquez A, Chen CC, Folpe AL, Chang YL, Liang CW. Identification of a novel FN1-FGFR1 genetic fusion as a frequent event in phosphaturic mesenchymal tumour. J Pathol. 2015;235:539–545. [PubMed: 25319834]

149.

Lee JC, Su SY, Changou CA, Yang RS, Tsai KS, Collins MT, Orwoll ES, Lin CY, Chen SH, Shih SR, Lee CH, Oda Y, Billings SD, Li CF, Nielsen GP, Konishi E, Petersson F, Carpenter TO, Sittampalam K, Huang HY, Folpe AL. Characterization of FN1-FGFR1 and novel FN1-FGF1 fusion genes in a large series of phosphaturic mesenchymal tumors. Mod Pathol. 2016;29:1335–1346. [PubMed: 27443518]

150.

Jan de Beur SM, Miller PD, Weber TJ, Peaco*ck M, Insogna K, Kumar R, Rauch F, Luca D, Cimms T, Roberts MS, San Martin J, Carpenter TO. Burosumab for the Treatment of Tumor-Induced Osteomalacia. J Bone Miner Res. 2021;36(4):627–635. [PMC free article: PMC8247961] [PubMed: 33338281]

151.

de Castro LF, Ovejero D, Boyce AM. Eur J Endocrinol. DIAGNOSIS OF ENDOCRINE DISEASE: Mosaic disorders of FGF23 excess: Fibrous dysplasia/McCune-Albright syndrome and cutaneous skeletal hypophosphatemia syndrome. 2020 May;182(5):R83-R99. doi: 10.1530/EJE-19-0969. [PMC free article: PMC7104564] [PubMed: 32069220] [CrossRef]

152.

Lim YH, Ovejero D, Sugarman JS, Deklotz CM, Maruri A, Eichenfield LF, Kelley PK, Jüppner H, Gottschalk M, Tifft CJ, Gafni RI, Boyce AM, Cowen EW, Bhattacharyya N, Guthrie LC, Gahl WA, Golas G, Loring EC, Overton JD, Mane SM, Lifton RP, Levy ML, Collins MT, Choate KA. Multilineage somatic activating mutations in HRAS and NRAS cause mosaic cutaneous and skeletal lesions, elevated FGF23 and hypophosphatemia. Hum Mol Genet. 2014;23:397–407. [PMC free article: PMC3869357] [PubMed: 24006476]

153.

White KE, Cabral JM, Davis SI, Fishburn T, Evans WE, Ichikawa S, Fields J, Yu X, Shaw NJ, McLellan NJ, McKeown C, Fitzpatrick D, Yu K, Ornitz DM, Econs MJ. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am J Hum Genet. 2005;76(2):361–367. [PMC free article: PMC1196382] [PubMed: 15625620]

154.

Brown WW, Jüppner H, Langman CB, Price H, Farrow EG, White KE, McCormick KL. Hypophosphatemia with elevations in serum fibroblast growth factor 23 in a child with Jansen’s metaphyseal chondrodysplasia. J Clin Endocrinol Metab. 2009;94(1):17–20. [PMC free article: PMC2630869] [PubMed: 18854401]

155.

Fradet A, Fitzgerald J. INPPL1 gene mutations in opsismodysplasia. J Hum Genet. 2017;62(2):135–140. [PMC free article: PMC5268411] [PubMed: 27708270]

156.

Tieder M, Modai D, Samuel R, et al. Hereditary hypophosphatemic rickets with hypercalciuria. N Engl J Med. 1985;312:611–617. [PubMed: 2983203]

157.

Tieder M, Modai D, Shaked U, et al. Idiopathic hypercalciuria and hereditary hypophosphatemic rickets. Two phenotypical expressions of a common genetic defect. N Engl J Med. 1987;316:125–129. [PubMed: 3796683]

158.

Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, Gershoni-Baruch R, Albers N, Lichtner P, Schnabel D, Hochberg Z, Strom TM. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006;78:193–201. [PMC free article: PMC1380229] [PubMed: 16358215]

159.

Jaureguiberry G, Carpenter TO, Forman S, Jüppner H, Bergwitz C. A novel missense mutation in SLC34A3 that causes HHRH identifies threonine 137 as an important determinant of sodium-phosphate cotransport in NaPi-IIc. Am J Physiol Renal Physiol. 2008;295:F371–F379. [PMC free article: PMC2519180] [PubMed: 18480181]

160.

Magen D, Berger L, Coady MJ, Ilivitzki A, Militianu D, Tieder M, Selig S, Lapointe JY, Zelikovic I, Skorecki K. A loss-of-function mutation in NaPi-IIa and renal fanconi's syndrome. N Engl J Med. 2010;362:1102–1109. [PubMed: 20335586]

161.

Schlingmann KP, Ruminska J, Kaufmann M, Dursun I, Patti M, Kranz B, Pronicka E, Ciara E, Akcay T, Bulus D, Cornelissen EA, Gawlik A, Sikora P, Patzer L, Galiano M, Boyadzhiev V, Dumic M, Vivante A, Kleta R, Dekel B, Levtchenko E, Bindels RJ, Rust S, Forster IC, Hernando N, Jones G, Wagner CA, Konrad M. Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J Am Soc Nephrol. 2016;27(2):604–14. [PMC free article: PMC4731111] [PubMed: 26047794]

162.

Scheinman SJ, Pook MA, Wooding C, Pang JT, Frymoyer PA, Thakker RV. Mapping the gene causing X-linked recessive nephrolithiasis to Xp11.22 by linkage studies. J Clin Invest. 1997;91:2351–2357. [PMC free article: PMC443292] [PubMed: 8099916]

163.

Scheinman SJ. X-linked hypercalciuric nephrolithiasis: clinical syndromes and chloride channel mutations. Kidney Int. 1998;53:3–17. [PubMed: 9452994]

164.

Gonzalez Ballesteros LF, Ma NS, Gordon RJ, Ward L, Backeljauw P, Wasserman H, Weber DR, DiMeglio LA, Gagne J, Stein R, Cody D, Simmons K, Zimakas P, Topor LS, Agrawal S, Calabria A, Tebben P, Faircloth R, Imel EA, Casey L, Carpenter TO. Unexpected widespread hypophosphatemia and bone disease associated with elemental formula use in infants and children. Bone. 2017;97:287–292. [PMC free article: PMC5884631] [PubMed: 28167344]

165.

Eswarakumar AS, Ma NS, Ward LM, Backeljauw P, Wasserman H, Weber DR, DiMeglio LA, Imel EA, Gagne J, Cody D, Zimakas P, Topor LS, Agrawal S, Calabria A, Tebben P, Faircloth RS, Gordon R, Casey L, Carpenter TO. Long-Term Follow-up of Hypophosphatemic Bone Disease Associated With Elemental Formula Use: Sustained Correction of Bone Disease After Formula Change or Phosphate Supplementation. Clin Pediatr (Phila). 2020;59(12):1080–1085. [PubMed: 32666808]

166.

Harvey BM, Eussen SRBM, Harthoorn LF, Burks AW. Mineral Intake and Status of Cow's Milk Allergic Infants Consuming an Amino Acid-based Formula. J Pediatr Gastroenterol Nutr. 2017;65(3):346–349. [PMC free article: PMC5559186] [PubMed: 28604516]

Primary Disorders of Phosphate Metabolism (2024)
Top Articles
Latest Posts
Article information

Author: Annamae Dooley

Last Updated:

Views: 5941

Rating: 4.4 / 5 (45 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Annamae Dooley

Birthday: 2001-07-26

Address: 9687 Tambra Meadow, Bradleyhaven, TN 53219

Phone: +9316045904039

Job: Future Coordinator

Hobby: Archery, Couponing, Poi, Kite flying, Knitting, Rappelling, Baseball

Introduction: My name is Annamae Dooley, I am a witty, quaint, lovely, clever, rich, sparkling, powerful person who loves writing and wants to share my knowledge and understanding with you.