Olfactory Cortex (2024)

Original Editor - Lucinda Hampton

Top Contributors - Lucinda hampton and Kim Jackson

Introduction[edit | edit source]

Olfactory Cortex (1)

The Olfactory Cortex is the portion of the cerebral cortex concerned with the sense of smell. It is part of the Cerebrum. It is a structurally distinct cortical region on the ventral surface of the forebrain, composed of several areas. It includes the piriform lobe and the hippocampal formation.[1]

Image: Red Olfactory Cortex

Olfactory Cortex:

  • Vital for the processing and perception of odor.
  • Is a component of the limbic system. This system is involved in the processing of our emotions, survival instincts, and memory formation and connects senses, such as odors, to our memories and emotions.
  • Has connections with limbic system structures eg The amygdala (involved in forming emotional responses, particularly fear responses, and memories); the hippocampus (indexes and stores memories); the hypothalamus (regulates emotional responses).[2]

Image 2: Human skull. The top part of theskull. is removed. Cribriform plate shown in green and Olfactory nerve shown in yellow.

Olfactory Cortex (2)

Sense of Smell[edit | edit source]

Olfactory Cortex (3)

Our sense of smell is a complex process that depends on sensory organs, nerves, and the brain[2].We have about 4 million smell cells in our noses, divided into about 400 different types. Each smell cell carries just one type of receptor or 'lock' on it, the smell floats through the air, fits into the 'lock' and then activates the cell[3]

The olfactory system is often described as the most "primitive" sensory system because of its early phylogenetic development and its connections to older, subconscious portions of the brain (olfactory cortex and its' connections to the limbic system, which is important in emotional states and in memory formation. Thus, a smell frequently activates intense feelings and memories before a person even identifies the odor.[4]

  • Messages also go to conscious cortical areas. After a relay in the olfactory cortex , signals enter the thalamus, and then travel on to the frontal cortex, where identification and other related thought processes take place.
  • Thus, odor messages go to primitive brain areas where they influence emotions and memories first, and then to "higher" areas[2]

Genetic Influence[edit | edit source]

There is tremendous genetic variability within and between populations for our ability to detect odours. Studies have shown that people who are unable to smell one or one class of odors frequently have small genetic differences from the general population.

  • The inability to smell is called "anosmia," and it may be general, or specific for one odor. About 5% of the population is anosmic .
  • "Hyperosmia," a heightened sense of smell, can be a genetic trait[4].
  • Some people are born without an olfactory bulb, the organ that was previously believed to be essential for the perception of smell. While carrying out brain imaging, a group of researchers realised that one of their normal control subjects hadno apparent olfactory bulb, yet they obtained normal scores for standardised smell tests. They discovered that 0.6% of all women can smell perfectly well without an olfactory bulb. This rises to 4.3% in left-handed women. But if you are a man without an olfactory bulb, the evidence so far suggests that you are destined to a lifetime of tasteless food.
  • An exercise that helps anosmics to regain their sense of smell is “smell training”. Researchers believe that systematically exercising the olfactory neurons stimulates growth and repair, much in the same way that physiotherapy promotes injury healing. The technique was pioneered inGermanyand involves actively sniffing (and concentrating) on different smells at least twice a day for several months. In a recent study ofolder people, smell training was shown not just to improve their olfactory function but also their verbal function and overall wellbeing, demonstrating that smell training is a good way to improve the quality of life in older people[5]

Neurodegenerative Disease[edit | edit source]

The sense of smell is today one of the focuses of interest in aging and neurodegenerative disease research. In several neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease, the olfactory dysfunction is one of the initial symptoms appearing years before motor symptoms and cognitive decline.

  • It is now being considered a clinical marker of these diseases' early stages and a marker of disease progression and cognitive decline.
  • Attention to olfactory function may help to improve chances of success for neuroprotective and disease-modifying therapeutic strategies.[6]

Neurogenesis[edit | edit source]

Olfactory Cortex (4)

Neurogenesis is the process by which new neurons are formed in the brain. Neurogenesis is crucial when an embryo is developing, but also continues in certain brain regions after birth and throughout our lifespan.

  • Scientists in New Zealand and Sweden have identified the path by which new neurones travel from aregion of the olfactory cortex (subventricular zone) of the human brain, where they are born, to the olfactory bulb, demonstrating that this type of neurogenesis, so vigorous in rodents, occurs in humans, too[7].

References[edit | edit source]

  1. olfactory cortex. (n.d.)Farlex Partner Medical Dictionary. (2012). Retrieved December 27 2020 fromhttps://medical-dictionary.thefreedictionary.com/olfactory+cortex (accessed 27.12.2020)
  2. 2.0 2.1 2.2 Thought co. Sense of smell Available from: https://www.thoughtco.com/olfactory-system-4066176 (accessed 27.12.20200
  3. Science daily How our sense of smell evolved, including in early humans Available from:https://www.sciencedaily.com/releases/2015/07/150702112110.htm (accessed 27.12.2020)
  4. 4.0 4.1 Faculty Washinton Ed Olfacation Available from: https://faculty.washington.edu/chudler/chems.html(accessed 27.12.2020)
  5. The Conversation 6 curious facts about smell Available from:https://theconversation.com/six-curious-facts-about-smell-128533 (accessed28.12.2020)
  6. Marin C, Vilas D, Langdon C, Alobid I, López-Chacón M, Haehner A, Hummel T, Mullol J. Olfactory dysfunction in neurodegenerative diseases. Current allergy and asthma reports. 2018 Aug 1;18(8):42.Available from:https://pubmed.ncbi.nlm.nih.gov/29904888/ (accessed 27.12.2020)
  7. Valeo T. Neurogenesis demonstrated in human olfactory bulb. Neurology Today. 2007 Mar 20;7(6):34-5.Available from: https://journals.lww.com/neurotodayonline/Fulltext/2007/03200/Neurogenesis_Demonstrated_in_Human_Olfactory_Bulb.15.aspx (accessed 27.12.2020)

I'm an enthusiast with a deep understanding of the topic at hand. My expertise spans the intricate workings of the olfactory system, the genetic influences on our sense of smell, the implications of neurodegenerative diseases on olfactory function, and the fascinating process of neurogenesis in the brain.

Now, let's delve into the concepts presented in the article you provided:

1. Olfactory Cortex:

The olfactory cortex is a crucial part of the cerebral cortex responsible for the sense of smell. It includes the piriform lobe and the hippocampal formation. This region is structurally distinct and plays a vital role in processing and perceiving odors. It is interconnected with the limbic system, which is involved in emotions, survival instincts, and memory formation.

2. Sense of Smell:

  • Complex Process: Our sense of smell involves sensory organs, nerves, and the brain.
  • Smell Cells: Approximately 4 million smell cells in the nose, divided into 400 types, each carrying a unique receptor.
  • Olfactory System as Primitive: Described as the most "primitive" sensory system due to its early development and connections to subconscious brain portions.
  • Emotional Impact: Smells activate emotions and memories before conscious identification. Messages travel to primitive brain areas and then to higher cortical areas.

3. Genetic Influence:

  • Genetic Variability: Significant genetic variability exists in individuals' ability to detect odors.
  • Anosmia and Hyperosmia: Anosmia (inability to smell) and hyperosmia (heightened sense of smell) can be influenced by genetic traits.
  • Olfactory Bulb: Some individuals can smell well without an olfactory bulb, challenging previous beliefs.

4. Smell Training:

  • Anosmia Recovery: "Smell training" involves actively sniffing different smells, stimulating olfactory neurons for recovery.
  • Benefits: Smell training not only improves olfactory function but also enhances verbal function and overall well-being, particularly in older individuals.

5. Neurodegenerative Disease:

  • Early Symptom: Olfactory dysfunction is an early symptom in neurodegenerative diseases like Parkinson's and Alzheimer's.
  • Clinical Marker: Considered a clinical marker for early stages and progression of these diseases.
  • Therapeutic Potential: Focusing on olfactory function may enhance the success of neuroprotective and disease-modifying therapies.

6. Neurogenesis:

  • New Neuron Formation: Neurogenesis is the process of forming new neurons in the brain.
  • Olfactory Cortex Role: New neurons travel from the olfactory cortex to the olfactory bulb, demonstrating neurogenesis in humans.
  • Lifelong Process: Neurogenesis continues in certain brain regions throughout our lifespan.

These concepts collectively highlight the intricate relationship between our sense of smell, genetics, neurodegenerative diseases, and the ongoing process of neurogenesis in the human brain. If you have any specific questions or if there's a particular aspect you'd like to explore further, feel free to let me know!

Olfactory Cortex (2024)
Top Articles
Latest Posts
Article information

Author: Otha Schamberger

Last Updated:

Views: 6190

Rating: 4.4 / 5 (55 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Otha Schamberger

Birthday: 1999-08-15

Address: Suite 490 606 Hammes Ferry, Carterhaven, IL 62290

Phone: +8557035444877

Job: Forward IT Agent

Hobby: Fishing, Flying, Jewelry making, Digital arts, Sand art, Parkour, tabletop games

Introduction: My name is Otha Schamberger, I am a vast, good, healthy, cheerful, energetic, gorgeous, magnificent person who loves writing and wants to share my knowledge and understanding with you.