Nanoparticles for Brain Drug Delivery (2024)

1. Honjo K., Black S. E., Verhoeff N. P. Alzheimer’s disease, cerebrovascular disease, and the β-amyloid cascade. Canadian Journal of Neurological Sciences. 2012;39(6):712–728. [PubMed] [Google Scholar]

2. Kanwar J. R., Sriramoju B., Kanwar R. K. Neurological disorders and therapeutics targeted to surmount the blood-brain barrier. International Journal of Nanomedicine. 2012;7:3259–3278. [PMC free article] [PubMed] [Google Scholar]

3. Wahl M., Unterberg A., Baethmann A., Schilling L. Mediators of blood-brain barrier dysfunction and formation of vasogenic brain edema. Journal of Cerebral Blood Flow and Metabolism. 1988;8(5):621–634. [PubMed] [Google Scholar]

4. de Boer A. G., Breimer D. D. Cytokines and blood-brain barrier permeability. Progress in Brain Research. 1998;115:425–451. [PubMed] [Google Scholar]

5. Petty M. A., Lo E. H. Junctional complexes of the blood-brain barrier: permeability changes in neuroinflammation. Progress in Neurobiology. 2002;68(5):311–323. doi:10.1016/S0301-0082(02)00128-4. [PubMed] [CrossRef] [Google Scholar]

6. Kastin A. J., Pan W., Maness L. M., Banks W. A. Peptides crossing the blood-brain barrier: some unusual observations. Brain Research. 1999;848(1-2):96–100. doi:10.1016/S0006-8993(99)01961-7. [PubMed] [CrossRef] [Google Scholar]

7. Pardridge W. M., Eisenberg J., Yang J. Human blood-brain barrier insulin receptor. Journal of Neurochemistry. 1985;44(6):1771–1778. [PubMed] [Google Scholar]

8. Zhang Y., Pardridge W. M. Conjugation of brain-derived neurotrophic factor to a blood-brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neurotrophin. Brain Research. 2001;889(1-2):49–56. doi:10.1016/S0006-8993(00)03108-5. [PubMed] [CrossRef] [Google Scholar]

9. Santaguida S., Janigro D., Hossain M., Oby E., Rapp E., Cucullo L. Side by side comparison between dynamic versus static models of blood-brain barrier in vitro: a permeability study. Brain Research. 2006;1109(1):1–13. doi:10.1016/j.brainres.2006.06.027. [PubMed] [CrossRef] [Google Scholar]

10. Rabanel J. M., Aoun V., Elkin I., Mokhtar M., Hildgen P. Drug-loaded nanocarriers: passive targeting and crossing of biological barriers. Current Medicinal Chemistry. 2012;19(19):3070–3102. doi:10.2174/092986712800784702. [PubMed] [CrossRef] [Google Scholar]

11. Bellavance M. A., Blanchette M., Fortin D. Recent advances in blood-brain barrier disruption as a CNS delivery strategy. AAPS Journal. 2008;10(1):166–177. doi:10.1208/s12248-008-9018-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Pardridge W. M. Drug transport across the blood-brain barrier. Journal of Cerebral Blood Flow & Metabolism. 2012;32(11):1959–1972. [PMC free article] [PubMed] [Google Scholar]

13. Minn A., Leclerc S., Heydel J. M., et al. Drug transport into the mammalian brain: the nasal pathway and its specific metabolic barrier. Journal of Drug Targeting. 2002;10(4):285r–296r. [PubMed] [Google Scholar]

14. Holmes D. The next big things are tiny. Lancet Neurology. 2013;12(1):31–32. doi:10.1016/S1474-4422(12)70313-7. [PubMed] [CrossRef] [Google Scholar]

15. Re F., Gregori M., Masserini M. Nanotechnology for neurodegenerative disorders. Nanomedicine NBM. 2012;8(supplement 1):S51–S58. [PubMed] [Google Scholar]

16. Youns M., Hoheisel J. D., Efferth T. Therapeutic and diagnostic applications of nanoparticles. Current Drug Targets. 2011;12(3):357–365. [PubMed] [Google Scholar]

17. Petkar K. C., Chavhan S. S., Agatonovik-Kustrin S., Sawant K. K. Nanostructured materials in drug and gene delivery: a review of the state of the art. Critical Reviews in Therapeutic Drug Carrier Systems. 2011;28(2):101–164. [PubMed] [Google Scholar]

18. Montet X., Funovics M., Montet-Abou K., Weissleder R., Josephson L. Multivalent effects of RGD peptides obtained by nanoparticle display. Journal of Medicinal Chemistry. 2006;49(20):6087–6093. doi:10.1021/jm060515m. [PubMed] [CrossRef] [Google Scholar]

19. Provenzale J. M., Silva G. A. Uses of nanoparticles for central nervous system imaging and therapy. American Journal of Neuroradiology. 2009;30(7):1293–1301. doi:10.3174/ajnr.A1590. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Gabathuler R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiology of Disease. 2010;37(1):48–57. doi:10.1016/j.nbd.2009.07.028. [PubMed] [CrossRef] [Google Scholar]

21. Andersen A. J., Hashemi S. H., Galimberti G., Re F., Masserini M., Moghimi S. M. The interaction of complement system with abeta-binding liposomes: towards engineering of safer vesicles for the management of Alzheimer's disease. Journal of Biotechnology. 2010;150(1):S97–S98. [Google Scholar]

22. Haque S., Md S., Alam M. I., Sahni J. K., Ali J., Baboota S. Nanostructure-based drug delivery systems for brain targeting. Drug Development and Industrial Pharmacy. 2012;38(4):387–411. doi:10.3109/03639045.2011.608191. [PubMed] [CrossRef] [Google Scholar]

23. Martin-Banderas L., Holgado M. A., Venero J. L., Alvarez-Fuentes J., Fernàdez-Aréalo M. Nanostructures for drug delivery to the brain. Current Medicinal Chemistry. 2011;148(34):5303–5321. [PubMed] [Google Scholar]

24. Budai M., Szógyi M. Liposomes as drug carrier systems. Preparation, classification and therapeutical advantages of liposomes. Acta Pharmaceutica Hungarica. 2001;71(1):114–118. [PubMed] [Google Scholar]

25. Lai F., Fadda A. M., Sinico C. Liposomes for brain delivery. Expert Opinion on Drug Delivery. 2013 doi:10.1517/17425247.2013.766714. [PubMed] [CrossRef] [Google Scholar]

26. Ishii T., Asai T., Oyama D., et al. Treatment of cerebral ischemia-reperfusion injury with PEGylated liposomes encapsulating FK506. FASEB Journal. 2013;27(4):1362–1370. [PubMed] [Google Scholar]

27. Lindqvist A., Rip J., Gaillard P. J., Björkman S., Hammarlund-Udenaes M. Enhanced brain delivery of the opioid peptide DAMGO in glutathione PEGylated liposomes: a microdialysis study. Molecular Pharmacology. 2012 doi:10.1021/mp300272a. [PubMed] [CrossRef] [Google Scholar]

28. Orthmann A., Zeisig R., Süss R., Lorenz D., Lemm M., Fichtner I. Treatment of experimental brain metastasis with MTO-liposomes: impact of fluidity and LRP-targeting on the therapeutic result. Pharmaceutical Research. 2012;29(7):1949–1959. doi:10.1007/s11095-012-0723-7. [PubMed] [CrossRef] [Google Scholar]

29. da Cruz M. T., Simões S., de Lima M. C. Improving lipoplex-mediated gene transfer into C6 glioma cells and primary neurons. Experimental Neurology. 2004;187(1):65–75. doi:10.1016/j.expneurol.2003.12.013. [PubMed] [CrossRef] [Google Scholar]

30. Artzner F., Zantl R., Rädler J. O. Lipid-DNA and lipid-polyelectrolyte mesophases: structure and exchange kinetics. Cellular and Molecular Biology. 2000;46(5):967–978. [PubMed] [Google Scholar]

31. Molinari A., Colone M., Calcabrini A., et al. Cationic liposomes, loaded with m-THPC, in photodynamic therapy for malignant glioma. Toxicology in Vitro. 2007;21(2):230–234. doi:10.1016/j.tiv.2006.09.006. [PubMed] [CrossRef] [Google Scholar]

32. Obata Y., Ciofani G., Raffa V., et al. Evaluation of cationic liposomes composed of an amino acid-based lipid for neuronal transfection. Nanomedicine. 2010;6(1):e70–e77. doi:10.1016/j.nano.2009.04.005. [PubMed] [CrossRef] [Google Scholar]

33. Zhao M., Chang J., Fu X., et al. Nano-sized cationic polymeric magnetic liposomes significantly improves drug delivery to the brain in rats. Journal of Drug Targeting. 2012;20(5):416–421. doi:10.3109/1061186X.2011.651726. [PubMed] [CrossRef] [Google Scholar]

34. Kaur I. P., Bhandari R., Bhandari S., Kakkar V. Potential of solid lipid nanoparticles in brain targeting. Journal of Controlled Release. 2008;127(2):97–109. doi:10.1016/j.jconrel.2007.12.018. [PubMed] [CrossRef] [Google Scholar]

35. Pardeshi C., Rajput P., Belgamwar V., et al. Solid lipid based nanocarriers: an overview. Acta Pharmaceutica. 2012;62(4):433–472. [PubMed] [Google Scholar]

36. Mishra B., Patel B. B., Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine. 2010;6(1):e9–e24. doi:10.1016/j.nano.2009.04.008. [PubMed] [CrossRef] [Google Scholar]

37. Blasi P., Giovagnoli S., Schoubben A., Ricci M., Rossi C. Solid lipid nanoparticles for targeted brain drug delivery. Advanced Drug Delivery Reviews. 2007;59(6):454–477. doi:10.1016/j.addr.2007.04.011. [PubMed] [CrossRef] [Google Scholar]

38. Wang J. X., Sun X., Zhang Z. R. Enhanced brain targeting by synthesis of 3′,5′-dioctanoyl-5-fluoro-2′-deoxyuridine and incorporation into solid lipid nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics. 2002;54(3):285–290. doi:10.1016/S0939-6411(02)00083-8. [PubMed] [CrossRef] [Google Scholar]

39. Martins S., Tho I., Reimold I., et al. Brain delivery of camptothecin by means of solid lipid nanoparticles: formulation design, in vitro and in vivo studies. International Journal of Pharmaceutics. 2012;439(1-2):49–62. doi:10.1016/j.ijpharm.2012.09.054. [PubMed] [CrossRef] [Google Scholar]

40. Md S., Ali M., Baboota S., et al. Preparation, characterization, in vivo biodistribution and pharmaco*kinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting. Drug Development and Industrial Pharmacy. 2013 doi:10.3109/03639045.2012.758130. [PubMed] [CrossRef] [Google Scholar]

41. Madan J., Pandey R. S., Jain V., Katare O. P., Chandra R., Katyal A. Poly (ethylene)-glycol conjugated solid lipid nanoparticles of noscapine improve biological half-life, brain delivery and efficacy in glioblastoma cells. Drug Delivery. 2012;19(8):378–391. doi:10.3109/10717544.2012.738437. [PubMed] [CrossRef] [Google Scholar]

42. Zhang X., Chen G., Wen L., et al. Novel multiple agents loaded PLGA nanoparticles for brain delivery via inner ear administration: in vitro and in vivo evaluation. European Journal of Pharmaceutical Sciences. 2013;48(4-5):595–603. [PubMed] [Google Scholar]

43. Choonara Y. E., Pillay V., Ndesendo V. M. K., et al. Polymeric emulsion and crosslink-mediated synthesis of super-stable nanoparticles as sustained-release anti-tuberculosis drug carriers. Colloids and Surfaces B. 2011;87(2):243–254. doi:10.1016/j.colsurfb.2011.05.025. [PubMed] [CrossRef] [Google Scholar]

44. Pandey R., Khuller G. K. Oral nanoparticle-based antituberculosis drug delivery to the brain in an experimental model. Journal of Antimicrobial Chemotherapy. 2006;57(6):1146–1152. doi:10.1093/jac/dkl128. [PubMed] [CrossRef] [Google Scholar]

45. Hasadsri L., Kreuter J., Hattori H., Iwasaki T., George J. M. Functional protein delivery into neurons using polymeric nanoparticles. Journal of Biological Chemistry. 2009;284(11):6972–6981. doi:10.1074/jbc.M805956200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Kabanov A. V., Batrakova E. V., Melik-Nubarov N. S., et al. A new class of drug carriers: micelles of poly(oxyethylene)-poly(oxypropylene) block copolymers as microcontainers for drug targeting from blood in brain. Journal of Controlled Release. 1992;22(2):141–157. doi:10.1016/0168-3659(92)90199-2. [CrossRef] [Google Scholar]

47. Kim J. Y., Choi W. I., Kim Y. H., Tae G. Brain-targeted delivery of protein using chitosan- and RVG peptide-conjugated, pluronic-based nano-carrier. Biomaterials. 2013;34(4):1170–1179. doi:10.1016/j.biomaterials.2012.09.047. [PubMed] [CrossRef] [Google Scholar]

48. Dutta T., Agashe H. B., Garg M., Balasubramanium P., Kabra M., Jain N. K. Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro. Journal of Drug Targeting. 2007;15(1):89–98. doi:10.1080/10611860600965914. [PubMed] [CrossRef] [Google Scholar]

49. Dhanikula R. S., Hammady T., Hildgen P. On the mechanism and dynamics of uptake and permeation of polyether-copolyester dendrimers across an in vitro blood-brain barrier model. Journal of Pharmaceutical Sciences. 2009;98(10):3748–3760. doi:10.1002/jps.21669. [PubMed] [CrossRef] [Google Scholar]

50. Albertazzi L., Gherardini L., Brondi M., et al. In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry. Molecular Pharmacology. 2013;10(1):249–260. doi:10.1021/mp300391v. [PubMed] [CrossRef] [Google Scholar]

51. Kannan S., Dai H., Navath R. S., et al. Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Science Translational Medicine. 2012;4(130)130ra46 [PMC free article] [PubMed] [Google Scholar]

52. Wu J., Wang C., Sun J., Xue Y. Neurotoxicity of silica nanoparticles: brain localization and dopaminergic neurons damage pathways. ACS Nano. 2011;5(6):4476–4489. doi:10.1021/nn103530b. [PubMed] [CrossRef] [Google Scholar]

53. Sousa F., Mandal S., Garrovo C., et al. Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study. Nanoscale. 2010;2(12):2826–2834. doi:10.1039/c0nr00345j. [PubMed] [CrossRef] [Google Scholar]

54. Ze Y., Zheng L., Zhao X., et al. Molecular mechanism of titanium dioxide nanoparticles-induced oxidative injury in the brain of mice. Chemosphere. 2013 doi:10.1016/j.chemosphere.2013.01.094. [PubMed] [CrossRef] [Google Scholar]

55. Broadwell R. D. Transcytosis of macromolecules through the blood-brain barrier: a cell biological perspective and critical appraisal. Acta Neuropathologica. 1989;79(2):117–128. [PubMed] [Google Scholar]

56. Kumagai A. K., Eisenberg J. B., Pardridge W. M. Absorptive-mediated endocytosis of cationized albumin and a β-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport. Journal of Biological Chemistry. 1987;262(31):15214–15219. [PubMed] [Google Scholar]

57. Dakwar G. R., Abu Hammad I., Popov M., et al. Delivery of proteins to the brain by bolaamphiphilic nano-sized vesicles. Journal of Controlled Release. 2012;160(2):315–321. doi:10.1016/j.jconrel.2011.12.042. [PubMed] [CrossRef] [Google Scholar]

58. Jin J., Bae K. H., Yang H., et al. In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles. Bioconjugate Chemistry. 2011;22(12):2568–2572. doi:10.1021/bc200406n. [PubMed] [CrossRef] [Google Scholar]

59. Tuan Giam Chuang V., Kragh-Hansen U., Otagiri M. Pharmaceutical strategies utilizing recombinant human serum albumin. Pharmaceutical Research. 2002;19(5):569–577. doi:10.1023/A:1015396825274. [PubMed] [CrossRef] [Google Scholar]

60. Tian X. H., Wei F., Wang T. X., et al. In vitro and in vivo studies on gelatin-siloxane nanoparticles conjugated with SynB peptide to increase drug delivery to the brain. International Journal of Nanomedicine. 2012;7:1031–1041. [PMC free article] [PubMed] [Google Scholar]

61. Rao K. S., Reddy M. K., Horning J. L., Labhasetwar V. TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials. 2008;29(33):4429–4438. doi:10.1016/j.biomaterials.2008.08.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Liu L., Venkatraman S. S., Yang Y. Y., et al. Polymeric micelles anchored with TAT for delivery of antibiotics across the blood-brain barrier. Biopolymers. 2008;90(5):617–623. doi:10.1002/bip.20998. [PubMed] [CrossRef] [Google Scholar]

63. Xu K., Wang H., Liu L., et al. Efficacy of CG(3)R(6)TAT nanoparticles self-assembled from a novel antimicrobial peptide for the treatment of Candida albicans meningitis in rabbits. Chemotherapy. 2011;57(5):417–425. doi:10.1159/000330855. [PubMed] [CrossRef] [Google Scholar]

64. Praetorius M., Brunner C., Lehnert B., et al. Transsynaptic delivery of nanoparticles to the central auditory nervous system. Acta Oto-Laryngologica. 2007;127(5):486–490. doi:10.1080/00016480600895102. [PubMed] [CrossRef] [Google Scholar]

65. Xia H., Gao X., Gu G., et al. Penetratin-functionalized PEG-PLA nanoparticles for brain drug delivery. International Journal of Pharmacology. 2012;436(1-2):840–850. [PubMed] [Google Scholar]

66. Parikh T., Bommana M. M., Squillante E. Efficacy of surface charge in targeting pegylated nanoparticles of sulpiride to the brain. European Journal of Pharmaceutics and Biopharmaceutics. 2010;74(3):442–450. doi:10.1016/j.ejpb.2009.11.001. [PubMed] [CrossRef] [Google Scholar]

67. Liu X., An C., Jin P., Liu X., Wang L. Protective effects of cationic bovine serum albumin-conjugated PEGylated tanshinone IIA nanoparticles on cerebral ischemia. Biomaterials. 2013;34(3):817–830. doi:10.1016/j.biomaterials.2012.10.017. [PubMed] [CrossRef] [Google Scholar]

68. Hervé F., Ghinea N., Scherrmann J. M. CNS delivery via adsorptive transcytosis. AAPS Journal. 2008;10(3):455–472. doi:10.1208/s12248-008-9055-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Muro S., Koval M., Muzykantov V. Endothelial endocytic pathways: gates for vascular drug delivery. Current Vascular Pharmacology. 2004;2(3):281–299. doi:10.2174/1570161043385736. [PubMed] [CrossRef] [Google Scholar]

70. Rejman J., Oberle V., Zuhorn I. S., Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochemical Journal. 2004;377(1):159–169. doi:10.1042/BJ20031253. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Georgieva J. V., Kalicharan D., Couraud P. O., et al. Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood-brain barrier endothelial cells in vitro. Molecular Therapy. 2011;19(2):318–325. doi:10.1038/mt.2010.236. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Xu Q., Wang C. H., Pack D. W. Polymeric carriers for gene delivery: chitosan and poly(amidoamine) dendrimers. Current Pharmaceutical Design. 2010;16(21):2350–2368. doi:10.2174/138161210791920469. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Bao H., Jin X., Li L., Lv F., Liu T. OX26 modified hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) nanoparticles: synthesis, characterization and evaluation of its brain delivery ability. Journal of Materials Science. 2012;23(8):1891–1901. [PubMed] [Google Scholar]

74. Prades R., Guerrero S., Arraya E., et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials. 2012;33(29):7194–7205. doi:10.1016/j.biomaterials.2012.06.063. [PubMed] [CrossRef] [Google Scholar]

75. Yemişci M., Gürsoy-Özdemi Y., Caban S., et al. Transport of a caspase inhibitor across the blood-brain barrier by chitosan nanoparticles. Methods in Enzymology. 2012;508:253–269. [PubMed] [Google Scholar]

76. Karatas H., Aktas Y., Gursoy-Ozdemir Y., et al. A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection. Journal of Neuroscience. 2009;29(44):13761–13769. doi:10.1523/JNEUROSCI.4246-09.2009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Pardridge W. M., Kang Y. S., Buciak J. L., Yang J. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate. Pharmaceutical Research. 1995;12(6):807–816. [PubMed] [Google Scholar]

78. Candela P., Gosselet F., Miller F., et al. Physiological pathway for low-density lipoproteins across the blood-brain barrier: transcytosis through brain capillary endothelial cells in vitro. Endothelium. 2008;15(5-6):254–264. doi:10.1080/10623320802487759. [PubMed] [CrossRef] [Google Scholar]

79. Li Y., He H., Jia X., et al. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials. 2012;33(15):3899–3908. doi:10.1016/j.biomaterials.2012.02.004. [PubMed] [CrossRef] [Google Scholar]

80. Bu G. Apolipoprotein e and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. Nature Reviews Neuroscience. 2009;10(5):333–344. doi:10.1038/nrn2620. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Laskowitz D. T., Thekdi A. D., Thekdi S. D., et al. Downregulation of microglial activation by apolipoprotein E and apoE-mimetic peptides. Experimental Neurology. 2001;167(1):74–85. doi:10.1006/exnr.2001.7541. [PubMed] [CrossRef] [Google Scholar]

82. Bell R. D., Sagare A. P., Friedman A. E., et al. Transport pathways for clearance of human Alzheimer's amyloid β-peptide and apolipoproteins E and J in the mouse central nervous system. Journal of Cerebral Blood Flow and Metabolism. 2007;27(5):909–918. doi:10.1038/sj.jcbfm.9600419. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Göppert T. M., Müller R. H. Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. Journal of Drug Targeting. 2005;13(3):179–187. doi:10.1080/10611860500071292. [PubMed] [CrossRef] [Google Scholar]

84. Koffie R. M., Farrar C. T., Saidi L. J., William C. M., Hyman B. T., Spires-Jones T. L. Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(46):18837–118842. [PMC free article] [PubMed] [Google Scholar]

85. Tian X. H., Lin X. N., Wei F., et al. Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles. International Journal of Nanomedicine. 2011;6:445–452. [PMC free article] [PubMed] [Google Scholar]

86. Kim H. R., Andrieux K., Gil S., et al. Translocation of poly(ethylene glycol-co-hexadecyl)cyanoacrylate nanoparticles into rat brain endothelial cells: role of apolipoproteins on receptor-medicted endocytosis. Biomacromolecules. 2007;8(3):793–799. doi:10.1021/bm060711a. [PubMed] [CrossRef] [Google Scholar]

87. Michaelis K., Hoffmann M. M., Dreis S., et al. Covalent linkage of apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain. Journal of Pharmacology and Experimental Therapeutics. 2006;317(3):1246–1253. doi:10.1124/jpet.105.097139. [PubMed] [CrossRef] [Google Scholar]

88. Zensi A., Begley D., Pontikis C., et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. Journal of Controlled Release. 2009;137(1):78–86. doi:10.1016/j.jconrel.2009.03.002. [PubMed] [CrossRef] [Google Scholar]

89. Hülsermann U., Hoffmann M. M., Massing U., Fricker G. Uptake of apolipoprotein E fragment coupled liposomes by cultured brain microvessel endothelial cells and intact brain capillaries. Journal of Drug Targeting. 2009;17(8):610–618. doi:10.1080/10611860903105986. [PubMed] [CrossRef] [Google Scholar]

90. Kreuter J., Shamenkov D., Petrov V., et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. Journal of Drug Targeting. 2002;10(4):317–325. doi:10.1080/10611860290031877. [PubMed] [CrossRef] [Google Scholar]

91. Mims M. P., Darnule A. T., Tovar R. W., et al. A nonexchangeable apolipoprotein E peptide that mediates binding to the low density lipoprotein receptor. Journal of Biological Chemistry. 1994;269(32):20539–20547. [PubMed] [Google Scholar]

92. Datta G., Chaddha M., Garber D. W., et al. The receptor binding domain of apolipoprotein E, linked to a model class A amphipathic helix, enhances internalization and degradation of LDL by fibroblasts. Biochemistry. 2000;39(1):213–220. doi:10.1021/bi991209w. [PubMed] [CrossRef] [Google Scholar]

93. Hülsermann U., Hoffmann M. M., Massing U., Fricker G. Uptake of apolipoprotein E fragment coupled liposomes by cultured brain microvessel endothelial cells and intact brain capillaries. Journal of Drug Targeting. 2009;17(8):610–618. doi:10.1080/10611860903105986. [PubMed] [CrossRef] [Google Scholar]

94. Dyer C. A., Cistola D. P., Parry G. C., Curtiss L. K. Structural features of synthetic peptides of apolipoprotein E that bind the LDL receptor. Journal of Lipid Research. 1995;36(1):80–88. [PubMed] [Google Scholar]

95. Wang X. S., Ciraolo G., Morris R., Gruenstein E. Identification of a neuronal endocytic pathway activated by an apolipoprotein E (apoE) receptor binding peptide. Brain Research. 1997;778(1):6–15. doi:10.1016/S0006-8993(97)00877-9. [PubMed] [CrossRef] [Google Scholar]

96. Sauer I., Dunay I. R., Weisgraber K., Bienert M., Dathe M. An apolipoprotein E-derived peptide mediates uptake of sterically stabilized liposomes into brain capillary endothelial cells. Biochemistry. 2005;44(6):2021–2029. doi:10.1021/bi048080x. [PubMed] [CrossRef] [Google Scholar]

97. Leupold E., Nikolenko H., Dathe M. Apolipoprotein E peptide-modified colloidal carriers: the design determines the mechanism of uptake in vascular endothelial cells. Biochimica et Biophysica Acta. 2009;1788(2):442–449. doi:10.1016/j.bbamem.2008.11.025. [PubMed] [CrossRef] [Google Scholar]

98. Re F., Cambianica I., Zona S C., et al. Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model. Nanomedicine NBM. 2011;7(5):551–559. doi:10.1016/j.nano.2011.05.004. [PubMed] [CrossRef] [Google Scholar]

99. Datta G., Garber D. W., Chung B. H., et al. Cationic domain 141-150 of apoE covalently linked to a class A amphipathic helix enhances atherogenic lipoprotein metabolism in vitro and in vivo. Journal of Lipid Research. 2001;42(6):959–966. [PubMed] [Google Scholar]

100. Demeule M., Currie J. C., Bertrand Y., et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector Angiopep-2. Journal of Neurochemistry. 2008;106(4):1534–1544. doi:10.1111/j.1471-4159.2008.05492.x. [PubMed] [CrossRef] [Google Scholar]

101. Ke W., Shao K., Huang R., et al. Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials. 2009;30(36):6976–6985. doi:10.1016/j.biomaterials.2009.08.049. [PubMed] [CrossRef] [Google Scholar]

102. Xin H., Sha X., Jiang X., Zhang W., Chen L., Fang X. Anti-glioblastoma efficacy and safety of pacl*taxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials. 2012;33(32):8167–8176. doi:10.1016/j.biomaterials.2012.07.046. [PubMed] [CrossRef] [Google Scholar]

103. Ren J., Shen S., Wang D., et al. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials. 2012;33(11):3324–3333. doi:10.1016/j.biomaterials.2012.01.025. [PubMed] [CrossRef] [Google Scholar]

104. Ponka P., Lok C. N. The transferrin receptor: role in health and disease. International Journal of Biochemistry and Cell Biology. 1999;31(10):1111–1137. doi:10.1016/S1357-2725(99)00070-9. [PubMed] [CrossRef] [Google Scholar]

105. Moos T., Nielsen T. R., Skjørringe T., Morgan E. H. Iron trafficking inside the brain. Journal of Neurochemistry. 2007;103(5):1730–1740. doi:10.1111/j.1471-4159.2007.04976.x. [PubMed] [CrossRef] [Google Scholar]

106. Visser C. C., Stevanović S., Voorwinden L. H., et al. Targeting liposomes with protein drugs to the blood-brain barrier in vitro. European Journal of Pharmaceutical Sciences. 2005;25(2-3):299–305. doi:10.1016/j.ejps.2005.03.008. [PubMed] [CrossRef] [Google Scholar]

107. Chang J., Jallouli Y., Kroubi M., et al. Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier. International Journal of Pharmaceutics. 2009;379(2):285–292. doi:10.1016/j.ijpharm.2009.04.035. [PubMed] [CrossRef] [Google Scholar]

108. de Boer A. G., Gaillard P. J. Drug targeting to the brain. Annual Review of Pharmacology and Toxicology. 2007;47:323–355. doi:10.1146/annurev.pharmtox.47.120505.105237. [PubMed] [CrossRef] [Google Scholar]

109. Mishra V., Mahor S., Rawat A., et al. Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. Journal of Drug Targeting. 2006;14(1):45–53. doi:10.1080/10611860600612953. [PubMed] [CrossRef] [Google Scholar]

110. Ulbrich K., Hekmatara T., Herbert E., Kreuter J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB) European Journal of Pharmaceutics and Biopharmaceutics. 2009;71(2):251–256. doi:10.1016/j.ejpb.2008.08.021. [PubMed] [CrossRef] [Google Scholar]

111. Brock J. H. Lactoferrin—50 years on. International Journal of Biochemistry & Cell Biology. 2012;90(3):245–251. [PubMed] [Google Scholar]

112. Lalani J., Raichandani Y., Mathur R., et al. Comparative receptor based brain delivery of tramadol-loaded poly(lactic-co-glycolic acid) nanoparticles. Journal of Biomedical Nanotechnology. 2012;8(6):918–927. [PubMed] [Google Scholar]

113. Jones A. R., Shusta E. V. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharmaceutical Research. 2007;24(9):1759–1771. doi:10.1007/s11095-007-9379-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Huwyler J., Wu D., Pardridge W. M. Brain drug delivery of small molecules using immunoliposomes. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(24):14164–14169. doi:10.1073/pnas.93.24.14164. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Markoutsa E., Pampalakis G., Niarakis A., et al. Uptake and permeability studies of BBB-targeting immunoliposomes using the hCMEC/D3 cell line. European Journal of Pharmaceutics and Biopharmaceutics. 2011;77(2):265–274. doi:10.1016/j.ejpb.2010.11.015. [PubMed] [CrossRef] [Google Scholar]

116. Lee H. J., Engelhardt B., Lesley J., Bickel U., Pardridge W. M. Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse. Journal of Pharmacology and Experimental Therapeutics. 2000;292(3):1048–1052. [PubMed] [Google Scholar]

117. Salvati E., Re F., Sesana S., et al. Liposomes functionalized to overcome the blood-brain barrier and to target amyloid-β peptide: the chemical design affects the permeability across an in vitro model. International Journal of Nanomedicine. 2013;8:1749–1758. [PMC free article] [PubMed] [Google Scholar]

118. Cui B., Wu C., Chen L., et al. One at a time, live tracking of NGF axonal transport using quantum dots. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(34):13666–13671. doi:10.1073/pnas.0706192104. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Bergen J. M., Pun S. H. Analysis of the intracellular barriers encountered by nonviral gene carriers in a model of spatially controlled delivery to neurons. Journal of Gene Medicine. 2008;10(2):187–197. doi:10.1002/jgm.1137. [PubMed] [CrossRef] [Google Scholar]

120. de Vries H. E., Kuiper J., de Boer A. G., van Berkel T. J. C., Breimer D. D. The blood-brain barrier in neuroinflammatory diseases. Pharmacological Reviews. 1997;49(2):143–155. [PubMed] [Google Scholar]

121. Sadekar S., Ghandehari H. Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery. Advanced Drug Delivery Reviews. 2012;64(6):571–588. doi:10.1016/j.addr.2011.09.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Kotzé A. F., Lueßen H. L., Leeuw B. J., Boer B. G., Verhoef J. C., Junginger H. E. Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2) Journal of Controlled Release. 1998;51(1):35–46. doi:10.1016/S0168-3659(97)00154-5. [PubMed] [CrossRef] [Google Scholar]

123. Treat L. H., McDannold N., Zhang Y., Vykhodtseva N., Hynynen K. Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma. Ultrasound in Medicine & Biology. 2012;38(10):1716–1725. [PMC free article] [PubMed] [Google Scholar]

124. Adamson R. H., Lenz J. F., Zhang X., Adamson G. N., Weinbaum S., Curry F. E. Oncotic pressures opposing filtration across non-fenestrated rat microvessels. Journal of Physiology. 2004;557(3):889–907. doi:10.1113/jphysiol.2003.058255. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Jander S., Schroeter M., Saleh A. Imaging inflammation in acute brain ischemia. Stroke. 2007;38(2):S642–S645. doi:10.1161/01.STR.0000250048.42916.ad. [PubMed] [CrossRef] [Google Scholar]

126. Enzmann G., Mysiorek C., Gorina R., et al. The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury. Acta Neuropathologica. 2013;125(3):395–412. doi:10.1007/s00401-012-1076-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Stoll G., Jander S., Schroeter M. Inflammation and glial responses in ischemic brain lesions. Progress in Neurobiology. 1998;56(2):149–171. doi:10.1016/S0301-0082(98)00034-3. [PubMed] [CrossRef] [Google Scholar]

128. Gartner S. HIV infection and dementia. Science. 2000;287(5453):602–604. doi:10.1126/science.287.5453.602. [PubMed] [CrossRef] [Google Scholar]

129. Afergan E., Epstein H., Dahan R., et al. Delivery of serotonin to the brain by monocytes following phagocytosis of liposomes. Journal of Controlled Release. 2008;132(2):84–90. doi:10.1016/j.jconrel.2008.08.017. [PubMed] [CrossRef] [Google Scholar]

130. Park K. Trojan monocytes for improved drug delivery to the brain. Journal of Controlled Release. 2008;132(2):p. 75. doi:10.1016/j.jconrel.2008.10.009. [PubMed] [CrossRef] [Google Scholar]

131. Dousset V., Brochet B., Deloire M. S. A., et al. MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. American Journal of Neuroradiology. 2006;27(5):1000–1005. [PMC free article] [PubMed] [Google Scholar]

132. Manninger S. P., Muldoon L. L., Nesbit G., Murillo T., Jacobs P. M., Neuwelt E. A. An exploratory study of ferumoxtran-10 nanoparticles as a blood-brain barrier imaging agent targeting phagocytic cells in CNS inflammatory lesions. American Journal of Neuroradiology. 2005;26(9):2290–2300. [PMC free article] [PubMed] [Google Scholar]

133. Dousset V., Ballarino L., Delalande C., et al. Comparison of ultrasmall particles of iron oxide (USPIO)-enhanced T2- weighted, conventional T2-weighted, and gadolinium-enhanced T1-weighted MR images in rats with experimental autoimmune encephalomyelitis. American Journal of Neuroradiology. 1999;20(2):223–227. [PMC free article] [PubMed] [Google Scholar]

134. Dousset V., Delalande C., Ballarino L., et al. In vivo macrophage activity imaging in the central nervous system detected by magnetic resonance. Magnetic Resonance in Medicine. 1999;41(2):329–333. [PubMed] [Google Scholar]

135. Floris S., Blezer E. L. A., Schreibelt G., et al. Blood-brain barrier permeability and monocyte infiltration in experimental allergic encephalomyelitis: a quantitative MRI study. Brain. 2004;127(3):616–627. doi:10.1093/brain/awh068. [PubMed] [CrossRef] [Google Scholar]

136. Rausch M., Hiestand P., Baumann D., Cannet C., Rudin M. MRI-based monitoring of inflammation and tissue damage in acute and chronic relapsing EAE. Magnetic Resonance in Medicine. 2003;50(2):309–314. doi:10.1002/mrm.10541. [PubMed] [CrossRef] [Google Scholar]

137. Rausch M., Hiestand P., Foster C. A., Baumann D. R., Cannet C., Rudin M. Predictability of FTY720 efficacy in experimental autoimmune encephalomyelitis by in vivo macrophage tracking: clinical implications for ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging. Journal of Magnetic Resonance Imaging. 2004;20(1):16–24. doi:10.1002/jmri.20057. [PubMed] [CrossRef] [Google Scholar]

138. Nighoghossian N., Wiart M., Cakmak S., et al. Inflammatory response after ischemic stroke: a USPIO-enhanced MRI study in patients. Stroke. 2007;38(2):303–307. doi:10.1161/01.STR.0000254548.30258.f2. [PubMed] [CrossRef] [Google Scholar]

139. Saleh A., Schroeter M., Jonkmanns C., Hartung H. P., Mödder U., Jander S. In vivo MRI of brain inflammation in human ischaemic stroke. Brain. 2004;127(7):1670–1677. doi:10.1093/brain/awh191. [PubMed] [CrossRef] [Google Scholar]

140. Kleinschnitz C., Schütz A., Nölte I., et al. In vivo detection of developing vessel occlusion in photothrombotic ischemic brain lesions in the rat by iron particle enhanced MRI. Journal of Cerebral Blood Flow and Metabolism. 2005;25(11):1548–1555. doi:10.1038/sj.jcbfm.9600151. [PubMed] [CrossRef] [Google Scholar]

141. Rausch M., Sauter A., Frohlich J., Neubacher U., Radu E. W., Rudin M. Dynamic patterns of USPIO enhancement can be observed in macrophages after ischemic brain damage. Magnetic Resonance in Medicine. 2001;46(5):1018–1022. doi:10.1002/mrm.1290. [PubMed] [CrossRef] [Google Scholar]

142. Rausch M., Baumann D., Neubacher U., Rudin M. In-vivo visualization of phagocytotic cells in rat brains after transient ischemia by USPIO. NMR in Biomedicine. 2002;15(4):278–283. doi:10.1002/nbm.770. [PubMed] [CrossRef] [Google Scholar]

143. Schroeter M., Saleh A., Wiedermann D., Hoehn M., Jander S. Histochemical detection of ultrasmall superparamagnetic iron oxide (USPIO) contrast medium uptake in experimental brain ischemia. Magnetic Resonance in Medicine. 2004;52(2):403–406. doi:10.1002/mrm.20142. [PubMed] [CrossRef] [Google Scholar]

144. Neuwelt E. A., Várallyay P., Bagó A. G., Muldoon L. L., Nesbit G., Nixon R. Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours. Neuropathology and Applied Neurobiology. 2004;30(5):456–471. doi:10.1111/j.1365-2990.2004.00557.x. [PubMed] [CrossRef] [Google Scholar]

145. Zimmer C., Weissleder R., Poss K., Bogdanova A., Wright S. C., Jr., Enochs W. S. MR imaging of phagocytosis in experimental gliomas. Radiology. 1995;197(2):533–538. [PubMed] [Google Scholar]

146. Baeten K., Hendriks J. J., Hellings N., et al. Visualisation of the kinetics of macrophage infiltration during experimental autoimmune encephalomyelitis by magnetic resonance imaging. Journal of Neuroimmunology. 2008;195(1-2):1–6. doi:10.1016/j.jneuroim.2007.11.008. [PubMed] [CrossRef] [Google Scholar]

147. Brochet B., Deloire M. S., Touil T., et al. Early macrophage MRI of inflammatory lesions predicts lesion severity and disease development in relapsing EAE. NeuroImage. 2006;32(1):266–274. doi:10.1016/j.neuroimage.2006.03.028. [PubMed] [CrossRef] [Google Scholar]

148. Oude Engberink R. D., Blezer E. L., Dijkstra C. D., van der Pol S. M., van der Toorn A., de Vries H. E. Dynamics and fate of USPIO in the central nervous system in experimental autoimmune encephalomyelitis. NMR in Biomedicine. 2010;23(9):1087–1096. [PubMed] [Google Scholar]

149. Sekeljic V., Bataveljic D., Stamenkovic S., et al. Cellular markers of neuroinflammation and neurogenesis after ischemic brain injury in the long-term survival rat model. Brain Structure and Function. 2012;217(2):411–420. doi:10.1007/s00429-011-0336-7. [PubMed] [CrossRef] [Google Scholar]

150. Parodi A., Quattrocchi N., van de Ven A. L., et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nature Nanotechnology. 2013;8(1):61–68. [PMC free article] [PubMed] [Google Scholar]

151. Syková E., Nicholson C. Diffusion in brain extracellular space. Physiological Reviews. 2008;88(4):1277–1340. doi:10.1152/physrev.00027.2007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

152. Wolak D. J., Thorne R. G. Diffusion of macromolecules in the Brain: implications for drug delivery. Molecular Pharmacology. 2013 doi:10.1021/mp300495e. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

153. Levin V. A., Fenstermacher J. D., Patlak C. S. Sucrose and inulin space measurements of cerebral cortex in four mammalian species. The American Journal of Physiology. 1970;219(5):1528–1533. [PubMed] [Google Scholar]

154. Thorne R. G., Nicholson C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(14):5567–5572. doi:10.1073/pnas.0509425103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

155. Nance E. A., Woodworth G. F., Sailor K. A., et al. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Science Translational Medicine. 2012;4(149)149ra119 [PMC free article] [PubMed] [Google Scholar]

156. Pietroiusti A., Campagnolo L., Fadeel B. Interactions of engineered nanoparticles with organs protected by internal biological barriers. Small. 2012 doi:10.1002/smll.201201463. [PubMed] [CrossRef] [Google Scholar]

157. Mahon E., Salvati A., Baldelli Bombelli F., Lynch I., Dawson K. A. Designing the nanoparticle-biomolecule interface for targeting and therapeutic delivery. Journal of Controlled Release. 2012;161(2):164–174. [PubMed] [Google Scholar]

158. Yang Y., Rosenberg G. A. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke. 2011;42(11):3323–3328. doi:10.1161/STROKEAHA.110.608257. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

159. Chen H., Spagnoli F., Burris M., et al. Nanoerythropoietin is 10-times more effective than regular erythropoietin in neuroprotection in a neonatal rat model of hypoxia-ischemia. Stroke. 2012;43(3):884–887. doi:10.1161/STROKEAHA.111.637090. [PubMed] [CrossRef] [Google Scholar]

160. Deng X., Wang X., Andersson R. Endothelial barrier resistance in multiple organs after septic and nonseptic challenges in the rat. Journal of Applied Physiology. 1995;78(6):2052–2061. [PubMed] [Google Scholar]

161. Lou J., Chofflon M., Juillard C., et al. Brain microvascular endothelial cells and leukocytes derived from patients with multiple sclerosis exhibit increased adhesion capacity. NeuroReport. 1997;8(3):629–633. [PubMed] [Google Scholar]

162. Minagar A., Shapshak P., Fujimura R., Ownby R., Heyes M., Eisdorfer C. The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. Journal of the Neurological Sciences. 2002;202(1-2):13–23. doi:10.1016/S0022-510X(02)00207-1. [PubMed] [CrossRef] [Google Scholar]

163. Bolton S. J., Perry V. H. Differential blood-brain barrier breakdown and leucocyte recruitment following excitotoxic lesions in juvenile and adult rats. Experimental Neurology. 1998;154(1):231–240. doi:10.1006/exnr.1998.6927. [PubMed] [CrossRef] [Google Scholar]

164. Sharma H. S., Castellani R. J., Smith M. A., Sharma A. The blood-brain barrier in Alzheimer's disease: novel therapeutic targets and nanodrug delivery. International Review of Neurobiology. 2012;102:47–90. doi:10.1016/B978-0-12-386986-9.00003-X. [PubMed] [CrossRef] [Google Scholar]

165. Kania K. D., Wijesuriya H. C., Hladky S. B., Barrand M. A. Beta amyloid effects on expression of multidrug efflux transporters in brain endothelial cells. Brain Research. 2011;1418:1–11. doi:10.1016/j.brainres.2011.08.044. [PubMed] [CrossRef] [Google Scholar]

166. Sarin H., Kanevsky A. S., Wu H., et al. Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. Journal of Translational Medicine. 2008;6, article 80 doi:10.1186/1479-5876-6-80. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

167. Sonavane G., Tomoda K., Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids and Surfaces B. 2008;66(2):274–280. doi:10.1016/j.colsurfb.2008.07.004. [PubMed] [CrossRef] [Google Scholar]

168. Oberdörster G., Sharp Z., Atudorei V., et al. Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology. 2004;16(6-7):437–445. doi:10.1080/08958370490439597. [PubMed] [CrossRef] [Google Scholar]

169. Hillyer J. F., Albrecht R. M. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. Journal of Pharmaceutical Sciences. 2001;90(12):1927–1936. doi:10.1002/jps.1143. [PubMed] [CrossRef] [Google Scholar]

170. Schleh C., Semmler-Behnke M., Lipka J., et al. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology. 2012;6(1):36–46. [PMC free article] [PubMed] [Google Scholar]

171. Barbu E., Molnàr E., Tsibouklis J., Górecki D. C. The potential for nanoparticle-based drug delivery to the brain: overcoming the blood-brain barrier. Expert Opinion on Drug Delivery. 2009;6(6):553–565. doi:10.1517/17425240902939143. [PubMed] [CrossRef] [Google Scholar]

172. Landsiedel R., Fabian E., Ma-Hock L., van Ravenzwaay B., Wohlleben W., et al. Toxico-/biokinetics of nanomaterials. Archives of Toxicoogyl. 2012;86(7):1021–1060. doi:10.1007/s00204-012-0858-7. [PubMed] [CrossRef] [Google Scholar]

173. Win-Shwe T. T., Fujimaki H. Nanoparticles and neurotoxicity. International Journal of Molecular Sciences. 2011;12(9):6267–6280. doi:10.3390/ijms12096267. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

174. Elder A., Gelein R., Silva V., et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environmental Health Perspectives. 2006;114(8):1172–1178. doi:10.1289/ehp.9030. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

175. Hutter E., Boridy S., Labrecque S., et al. Microglial response to gold nanoparticles. ACS Nano. 2010;4(5):2595–2606. doi:10.1021/nn901869f. [PubMed] [CrossRef] [Google Scholar]

176. Rivet C. J., Yuan Y., Borca-Tasciuc D. A., Gilbert R. J. Altering iron oxide nanoparticle surface properties induce cortical neuron cytotoxicity. Chemical Research in Toxicology. 2011;25(1):153–161. [PMC free article] [PubMed] [Google Scholar]

177. Olivier J. C., Fenart L., Chauvet R., Pariat C., Cecchelli R., Couet W. Indirect evidence that drug brain targeting using polysorbate 80- coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharmaceutical Research. 1999;16(12):1836–1842. [PubMed] [Google Scholar]

178. Buse J., El-Aneed A. Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: current research and advances. Nanomedicine. 2010;5(8):1237–1260. doi:10.2217/nnm.10.107. [PubMed] [CrossRef] [Google Scholar]

179. Xu P., Li J., Chen B., et al. The real-time neurotoxicity analysis of Fe3O4 nanoparticles combined with daunorubicin for rat brain in vivo. Journal of Biomedical Nanotechnology. 2012;8(3):417–423. [PubMed] [Google Scholar]

180. Singh S. P., Rahman M. F., Murty U. S., Mahboob M., Grover P. Comparative study of genotoxicity and tissue distribution of nano and micron sized iron oxide in rats after acute oral treatment. Toxicology and Applied Pharmacology. 2013;266(1):56–66. doi:10.1016/j.taap.2012.10.016. [PubMed] [CrossRef] [Google Scholar]

181. Cui Z., Mumper R. J. Coating of cationized protein on engineered nanoparticles results in enhanced immune responses. International Journal of Pharmaceutics. 2002;238(1-2):229–239. doi:10.1016/S0378-5173(02)00079-0. [PubMed] [CrossRef] [Google Scholar]

182. Papisov M. I., Belov V., Gannon K. Physiology of the intrathecal bolus: the leptomeningeal route for macromolecule and particle delivery to CNS. Molecular Pharmacology. 2013 doi:10.1021/mp300474m. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

Nanoparticles for Brain Drug Delivery (2024)
Top Articles
Latest Posts
Article information

Author: Velia Krajcik

Last Updated:

Views: 6394

Rating: 4.3 / 5 (54 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Velia Krajcik

Birthday: 1996-07-27

Address: 520 Balistreri Mount, South Armand, OR 60528

Phone: +466880739437

Job: Future Retail Associate

Hobby: Polo, Scouting, Worldbuilding, Cosplaying, Photography, Rowing, Nordic skating

Introduction: My name is Velia Krajcik, I am a handsome, clean, lucky, gleaming, magnificent, proud, glorious person who loves writing and wants to share my knowledge and understanding with you.