Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials (2024)

1. Scheepmaker J.W., Busschers M., Sundh I., Eilenberg J., Butt T.M. Sense and nonsense of the secondary metabolites data requirements in the EU for beneficial microbial control agents. Biol. Control. 2019;136:104005. doi:10.1016/j.biocontrol.2019.104005. [CrossRef] [Google Scholar]

2. Dastjerdi R., Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B. 2010;79:5–18. doi:10.1016/j.colsurfb.2010.03.029. [PubMed] [CrossRef] [Google Scholar]

3. Yang Z.C., Wang B.C., Yang X.S., Wang Q., Ran L. The synergistic activity of antibiotics combined with eight traditional Chinese medicines against two different strains of Staphylococcus aureus. Colloids Surf. B. 2005;41:79–81. doi:10.1016/j.colsurfb.2004.10.033. [PubMed] [CrossRef] [Google Scholar]

4. Parham S., Wicaksono D.H., Bagherbaigi S., Lee S.L., Nur H. Antimicrobial treatment of different metal oxide nanoparticles: A critical review. J. Chin. Chem. Soc. 2016;63:385–393. doi:10.1002/jccs.201500446. [CrossRef] [Google Scholar]

5. Huh A.J., Kwon Y.J. Nanoantibiotics: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release. 2011;156:128–145. doi:10.1016/j.jconrel.2011.07.002. [PubMed] [CrossRef] [Google Scholar]

6. Shaikh S., Nazam N., Rizvi SM D., Ahmad K., Baig M.H., Lee E.J., Choi I. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int. J. Mol. Sci. 2019;20:2468. doi:10.3390/ijms20102468. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

7. Raut P.K., Kim S.H., Choi D.Y., Jeong G.S., Park P.H. Growth of breast cancer cells by leptin is mediated via activation of the inflammasome: Critical roles of estrogen receptor signaling and reactive oxygen species production. Biochem. Pharmacol. 2019;161:73–88. doi:10.1016/j.bcp.2019.01.006. [PubMed] [CrossRef] [Google Scholar]

8. Nakamura Y., Arakawa H. Discovery of Mieap-regulated mitochondrial quality control as a new function of tumor suppressor p53. Cancer Sci. 2017;108:809–817. doi:10.1111/cas.13208. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Kim S.H., Kim K.Y., Yu S.N., Park S.G., Yu H.S., Seo Y.K., Ahn S.C. Monensin induces PC-3 prostate cancer cell apoptosis via ROS production and Ca2+ homeostasis disruption. Anticancer Res. 2016;36:5835–5843. doi:10.21873/anticanres.11168. [PubMed] [CrossRef] [Google Scholar]

10. Panieri E., Santoro M.M. ROS homeostasis and metabolism: A dangerous liason in cancer cells. Cell Death Dis. 2016;7:2253. doi:10.1038/cddis.2016.105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Parham S., Nemati M., Sadir S., Bagherbaigi S., Wicaksono D.H., Nur H. In Situ Synthesis of Silver Nanoparticles for Ag-NP/Cotton Nanocomposite and Its Bactericidal Effect. J. Chin. Chem. Soc. 2017;64:1286–1293. doi:10.1002/jccs.201700157. [CrossRef] [Google Scholar]

12. Parham S., Wicaksono D.H., Nur H. A proposed mechanism of action of textile/Al2O3–TiO2 bimetal oxide nanocomposite as an antimicrobial agent. J. Text. I. 2019;110:791–798. doi:10.1080/00405000.2018.1526445. [CrossRef] [Google Scholar]

13. Simões D., Miguel S.P., Ribeiro M.P., Coutinho P., Mendonça A.G., Correia I.J. Recent advances on antimicrobial wound dressing: A review. Eur. J. Pharm. Biopharm. 2018;127:130–141. doi:10.1016/j.ejpb.2018.02.022. [PubMed] [CrossRef] [Google Scholar]

14. Homaeigohar S., Boccaccini A.R. Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater. 2020 doi:10.1016/j.actbio.2020.02.022. [PubMed] [CrossRef] [Google Scholar]

15. Pohl P., Dzimitrowicz A., Jedryczko D., Szymczycha-Madeja A., Welna M., Jamroz P. The determination of elements in herbal teas and medicinal plant formulations and their tisanes. J. Pharm. Biomed. Anal. 2016;130:326–335. doi:10.1016/j.jpba.2016.01.042. [PubMed] [CrossRef] [Google Scholar]

16. Li X., Xu X., Wang J., Yu H., Wang X., Yang H., Xu H., Tang S., Li Y., Yang L., et al. A system-level investigation into the mechanisms of Chinese Traditional Medicine: Compound Danshen Formula for cardiovascular disease treatment. PLoS ONE. 2012;7:e43918. doi:10.1371/journal.pone.0043918. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Iid I.I., Kumar S., Shukla S., Kumar V., Sharma R. Putative antidiabetic herbal food ingredients: Nutra/functional properties, bioavailability and effect on metabolic pathways. Trends Food Sci. Technol. 2020;97:317–340. [Google Scholar]

18. Parham S., Kharazi A.Z., Bakhsheshi-Rad H.R., Ghayour H., Ismail A.F., Nur H., Berto F. Electrospun nano-fibers for biomedical and tissue engineering applications: A comprehensive review. Materials. 2020;13:2153. doi:10.3390/ma13092153. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Shim J.M. The relationship between the use of complementary and alternative medicine and the use of biomedical services: Evidence from East Asian medical systems. Asia Pac. J. Public Health. 2016;28:51–60. doi:10.1177/1010539515613411. [PubMed] [CrossRef] [Google Scholar]

20. Abdullahi A.A. Trends and challenges of traditional medicine in Africa. Afr. J. Tradit. Complement. Altern. Med. 2011;8:115–123. doi:10.4314/ajtcam.v8i5S.5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Upton R., Graff A., Jolliffe G., Länger R., Williamson E. American Herbal Pharmacopoeia: Botanical Pharmacognosy-Microscopic Characterization of Botanical Medicines. CRC Press; Boca Raton, FL, USA: 2016. [Google Scholar]

22. Kennedy D.A., Lupattelli A., Koren G., Nordeng H. Safety classification of herbal medicines used in pregnancy in a multinational study. BMC Complem Altern M. 2016;16:102. doi:10.1186/s12906-016-1079-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Saratale R.G., Benelli G., Kumar G., Kim D.S., Saratale G.D. Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environ. Sci. Pollut. R. 2018;25:10392–10406. doi:10.1007/s11356-017-9581-5. [PubMed] [CrossRef] [Google Scholar]

24. Firenzuoli F., Gori L. Herbal medicine today: Clinical and research issues. Evid. Based Complement. Alternat. Med. 2007;4:37–40. doi:10.1093/ecam/nem096. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Miraj S., Rafieian-Kopaei M., Kiani S. Melissa officinalis L.: A review study with an antioxidant prospective. Evid. Based Complement. Alternat Med. 2017;22:385–394. doi:10.1177/2156587216663433. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

26. Preethi R., Devanathan V.V., Loganathan M. Antimicrobial and antioxidant efficacy of some medicinal plants against food borne pathogens. Adv. Biol. Res. 2010;4:122–125. [Google Scholar]

27. Salazar-Aranda R., Pérez-Lopez L.A., Lopez-Arroyo J., Alanís-Garza B.A., Waksman de Torres N. Antimicrobial and antioxidant activities of plants from northeast of Mexico. Evid. Based Complement. Alternat. Med. 2011;2011:6. doi:10.1093/ecam/nep127. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Abu-Shanab B., Adwang M., Abu-Safiya D., Jarrar N., Adwan K. Antibacterial activities of some plant extracts utilized in popular medicine in Palestine. Turk. J. Biol. 2005;28:99–102. [Google Scholar]

29. Sharma A., del Carmen Flores-Vallejo R., Cardoso-Taketa A., Villarreal M.L. Antibacterial activities of medicinal plants used in Mexican traditional medicine. J. Ethnopharmacol. 2017;208:264–329. doi:10.1016/j.jep.2016.04.045. [PubMed] [CrossRef] [Google Scholar]

30. Waris K., Saleem S., Arshad M.U., Iqbal J. A novel complementary alternative medicine: An In-Vitro evaluation of efficacy of Nigella sativa extract as an antibacterial agent against Porphyromonas gingivalis. Ann. Punjab. Med. Coll. 2017;11:247–251. doi:10.29054/APMC/17.411. [CrossRef] [Google Scholar]

31. Pourghanbari G., Nili H., Moattari A., Mohammadi A., Iraji A. Antiviral activity of the oseltamivir and Melissa officinalis L. essential oil against avian influenza A virus (H9N2) Virus Dis. 2016;27:170–178. doi:10.1007/s13337-016-0321-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Burnett-Boothroyd S.C., McCarthy B.J. Textiles for Hygiene and Infection Control. Woodhead Publishing; Oxford, UK: 2011. Antimicrobial Treatments of Textiles for Hygiene and Infection Control Applications: An Industrial Perspective; pp. 196–209. [Google Scholar]

33. Bereksi M.S., Hassaïne H., Bekhechi C., Abdelouahid D.E. Evaluation of antibacterial activity of some medicinal plants extracts commonly used in Algerian traditional medicine against some pathogenic bacteria. Pharmacogn. J. 2018;10:3. doi:10.5530/pj.2018.3.83. [CrossRef] [Google Scholar]

34. Najafloo R., Behyari M., Imani R., Nour S. A mini-review of Thymol incorporated materials: Applications in antibacterial wound dressing. J. Drug Deliv. Sci. Technol. 2020;60:101904. doi:10.1016/j.jddst.2020.101904. [CrossRef] [Google Scholar]

35. Nithya P., Sundrarajan M. Ionic liquid functionalized biogenic synthesis of AgAu bimetal doped CeO2 nanoparticles from Justicia adhatoda for pharmaceutical applications: Antibacterial and anti-cancer activities. JPPBEG. 2020;202:111706. [PubMed] [Google Scholar]

36. Torkan S., Khamesipour F., Katsande S. Evaluating the effect of oral administration of Echinacea hydroethanolic extract on the immune system in dog. Auton Autacoid. Pharmacol. 2015;35:9–13. doi:10.1111/aap.12024. [PubMed] [CrossRef] [Google Scholar]

37. Tribess B., Pintarelli G.M., Bini L.A., Camargo A., Funez L.A., de Gasper A.L., Zeni A.L.B. Ethnobotanical study of plants used for therapeutic purposes in the Atlantic Forest region, Southern Brazil. J. Ethnopharmacol. 2015;164:136–146. doi:10.1016/j.jep.2015.02.005. [PubMed] [CrossRef] [Google Scholar]

38. Anwer M.K., Jamil S., Ibnouf E.O., Shakeel F. Enhanced antibacterial effects of clove essential oil by nanoemulsion. J. Oleo Sci. 2014;63:347–354. doi:10.5650/jos.ess13213. [PubMed] [CrossRef] [Google Scholar]

39. Cortés-Rojas D.F., de Souza CR F., Oliveira W.P. Clove (Syzygium aromaticum): A precious spice. Asian Pac. J. Trop Bio. 2014;4:90–96. doi:10.1016/S2221-1691(14)60215-X. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Zhou Y.X., Xin H.L., Rahman K., Wang S.J., Peng C., Zhang H. Portulaca oleracea L.: A review of phytochemistry and pharmacological effects. Bio. Med. Res. Int. 2015;2015:925631. [PMC free article] [PubMed] [Google Scholar]

41. Oliveira I., Valentão P., Lopes R., Andrade P.B., Bento A., Pereira J.A. Phytochemical characterization and radical scavenging activity of Portulaca oleraceae L. leaves and stems. Microchem. J. 2009;92:129–134. doi:10.1016/j.microc.2009.02.006. [CrossRef] [Google Scholar]

42. Tian C., Chang Y., Zhang Z., Wang H., Xiao S., Cui C., Liu M. Extraction technology, component analysis, antioxidant, antibacterial, analgesic and anti-inflammatory activities of flavonoids fraction from Tribulus terrestris L. leaves. Heliyon. 2019;5:e02234. doi:10.1016/j.heliyon.2019.e02234. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

43. Durgawale P.P., Datkhile K.D. Study of Polyphenol content and anti-oxidative potential of tribulus terrestris dry fruit extract. Int. J. Pharmacogn. Phytochem. Res. 2017;9:716–721. [Google Scholar]

44. Soumia B. Polyphenols: Mechanisms of Action in Human Health and Disease. Academic Press; Cambridge, MA, USA: 2018. Eryngium campestre L.: Polyphenolic and Flavonoid Compounds; Applications to Health and Disease; pp. 69–79. [Google Scholar]

45. Willis S., Sunkara R., Hester F., Shackelford L., Walker L.T., Verghese M. Chemopreventive and anti-inflammatory potential of select herbal teas and cinnamon in an in-vitro cell model. Food Nutr. Sci. 2019;10:1142–1156. [Google Scholar]

46. Gruenwald J., Freder J., Armbruester N. Cinnamon and health. Crit. Rev. Food Sci. Nutr. 2010;50:822–834. doi:10.1080/10408390902773052. [PubMed] [CrossRef] [Google Scholar]

47. Friedman M., Henika P.R., Mandrell R.E. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J. Food Prot. 2002;65:1545–1560. doi:10.4315/0362-028X-65.10.1545. [PubMed] [CrossRef] [Google Scholar]

48. Sharma S., Ghataury S.K., Sarathe A., Dubey G., Parkhe G. Curcuma angustifolia Roxb, (Zingiberaceae): Ethnobotany, phytochemistry and pharmacology: A review. J. Pharmacogn. Phytochem. 2019;8:1535–1540. [Google Scholar]

49. Panpatil V.V., Tattari S., Kota N., Nimgulkar C., Polasa K. In vitro evaluation on antioxidant and antimicrobial activity of spice extracts of ginger, turmeric and garlic. J. Pharmacogn Phytochem. 2013;2:143–148. [Google Scholar]

50. Singh A., Rani R., Sharma M. Medicinal Herbs of Punjab (India) Biol. Forum. 2018;10:10–27. [Google Scholar]

51. Idris N.A., Yasin H.M., Usman A. Voltammetric and spectroscopic determination of polyphenols and antioxidants in ginger (Zingiber officinale Roscoe) Heliyon. 2019;5:e01717. doi:10.1016/j.heliyon.2019.e01717. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Oliviero M., Romilde I., Beatrice M.M., Matteo V., Giovanna N., Consuelo A., Claudio C., Giorgio S., Filippo M., Massimo N. Evaluations of thyme extract effects in human normal bronchial and tracheal epithelial cell lines and in human lung cancer cell line. Chem. Biol. Interact. 2016;256:125–133. doi:10.1016/j.cbi.2016.06.024. [PubMed] [CrossRef] [Google Scholar]

53. Tzima K., Makris D., Nikiforidis C.V., Mourtzinos I. Potential use of rosemary, propolis and thyme as natural food preservatives. J. Nutri. Health. 2015;1:6. [Google Scholar]

54. Miraj S., Kiani S. Study of pharmacological effect of Mentha pulegium: A review. Der. Pharm. Lett. 2016;8:242–245. [Google Scholar]

55. Gaeini Z., Taghinezhad M., Sohrabvandi S., Mortazavian A.M., Mahdavi S.M. Healthful characteristics of pennyroyal essential oil. J. Paramed. Sci. 2013;4:2008–4978. [Google Scholar]

56. Rajić J.R., Đorđević S.M., Tešević V., Živković M., Đorđević N.O., Paunović D.M., Nedović V.A., Petrović T.S. The extract of fennel fruit as a potential natural additive in food industry. J. Agric. Sci. 2018;63:205–215. [Google Scholar]

57. Miraj S., Alesaeidi S. A systematic review study of therapeutic effects of Matricaria recuitta chamomile (chamomile) Electron. Physician. 2016;8:3024. doi:10.19082/3024. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Singh O., Khanam Z., Misra N., Srivastava M.K. Chamomile (Matricaria chamomilla L.): An overview. Pharmacogn. Rev. 2011;5:82. doi:10.4103/0973-7847.79103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Mimica-Dukic N., Bozin B. Mentha L. species (Lamiaceae) as promising sources of bioactive secondary metabolites. Curr. Pharm. Des. 2008;14:3141–3150. doi:10.2174/138161208786404245. [PubMed] [CrossRef] [Google Scholar]

60. Fierascu R.C., Georgiev M.I., Fierascu I., Ungureanu C., Avramescu S.M., Ortan A., Georgescu M.I., Sutan A.N., Zanfirescu A., Dinu-Pirvu C.E., et al. Mitodepressive, antioxidant, antifungal and anti-inflammatory effects of wild-growing Romanian native Arctium lappa L.(Asteraceae) and Veronica persica Poiret (Plantaginaceae) Food Chem. Toxicol. 2018;111:44–52. doi:10.1016/j.fct.2017.11.008. [PubMed] [CrossRef] [Google Scholar]

61. Lou Z., Wang H., Li J., Chen S., Zhu S., Ma C., Wang Z. Antioxidant activity and chemical composition of the fractions from burdock leaves. J. Food Sci. 2010;75:C413–C419. doi:10.1111/j.1750-3841.2010.01616.x. [PubMed] [CrossRef] [Google Scholar]

62. Mallard I., Bourgeois D., Fourmentin S. A friendly environmental approach for the controlled release of Eucalyptus essential oil. Colloid. Surf. A Physicochem. Eng. Asp. 2018;549:130–137. doi:10.1016/j.colsurfa.2018.04.010. [CrossRef] [Google Scholar]

63. Luís Â., Neiva D.M., Pereira H., Gominho J., Domingues F., Duarte A.P. Bioassay-guided fractionation, GC–MS identification and in vitro evaluation of antioxidant and antimicrobial activities of bioactive compounds from Eucalyptus globulus stump wood methanolic extract. Ind. Crop. Prod. 2016;91:97–103. doi:10.1016/j.indcrop.2016.06.022. [CrossRef] [Google Scholar]

64. Munir R., Semmar N., Farman M., Ahmad N.S. An updated review on pharmacological activities and phytochemical constituents of evening primrose (genus Oenothera) Asian Pac. J. Trop. Biomed. 2017;7:1046–1054. doi:10.1016/j.apjtb.2017.10.004. [CrossRef] [Google Scholar]

65. Montserrat-de la Paz S., Fernández-Arche Á., Ángel-Martín M., García-Giménez M.D. The sterols isolated from Evening Primrose oil modulate the release of proinflammatory mediators. Phytomedicine. 2012;19:1072–1076. doi:10.1016/j.phymed.2012.06.008. [PubMed] [CrossRef] [Google Scholar]

66. Miraj S., Azizi N., Kiani S. A review of chemical components and pharmacological effects of Melissa officinalis L. Der. Pharm. Lett. 2016;8:229–237. [Google Scholar]

67. Pirbalouti A.G., Nekoei M., Rahimmalek M., Malekpoor F. Chemical composition and yield of essential oil from lemon balm (Melissa officinalis L.) under foliar applications of jasmonic and salicylic acids. Biocatal. Agric. Biotechnol. 2019;19:101144. doi:10.1016/j.bcab.2019.101144. [CrossRef] [Google Scholar]

68. Paul D. A review on biological activities of common Mallow (Malva sylvestris L.) Life Sci. 2016;4:1–5. [Google Scholar]

69. Nasiri E., Hosseinimehr S.J., Azadbakht M., Akbari J., Enayati-fard R., Azizi S. Effect of Malva sylvestris cream on burn injury and wounds in rats. Avicenna J. Phytomed. 2015;5:341. [PMC free article] [PubMed] [Google Scholar]

70. Martins N., Petropoulos S., Ferreira I.C. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre-and post-harvest conditions: A review. Food Chem. 2016;211:41–50. doi:10.1016/j.foodchem.2016.05.029. [PubMed] [CrossRef] [Google Scholar]

71. Toledano Medina M.Á., Merinas-Amo T., Fernández-Bedmar Z., Font R., del Río-Celestino M., Pérez-Aparicio J., Moreno-Ortega A., Alonso-Moraga A., Moreno-Rojas R. Physicochemical characterization and biological activities of Black and White Garlic: In Vivo and In Vitro assays. Foods. 2019;8:220. doi:10.3390/foods8060220. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Abd E.A.M.H., El-Mesallamy A.M.D., El-Gerby M., Awad A. Anti-Tumor, antioxidant and antimicrobial and the phenolic constituents of clove flower buds (Syzygium aromaticum) J. Microb. Biochem. Technol. 2014;10:s8-s007. [Google Scholar]

73. Radünz M., da Trindade M.L., Camargo T.M., Radünz A.L., Borges C.D., Gandra E.A., Helbig E. Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chem. 2019;276:180–186. doi:10.1016/j.foodchem.2018.09.173. [PubMed] [CrossRef] [Google Scholar]

74. Heredia-Guerrero J.A., Ceseracciu L., Guzman-Puyol S., Paul U.C., Alfaro-Pulido A., Grande C., Vezzulli L., Bandiera T., Bertorelli R., Russo D., et al. Antimicrobial, antioxidant, and waterproof rtv silicone-ethyl cellulose composites containing clove essential oil. Carbohyd. Polym. 2018;192:150–158. doi:10.1016/j.carbpol.2018.03.050. [PubMed] [CrossRef] [Google Scholar]

75. Wankhede T.B. Evaluation of antioxidant and antimicrobial activity of the Indian clove Syzygium aromaticum L. Merr. and Perr. Int. Res. J. Sci. Eng. 2015;3:166–172. [Google Scholar]

76. Cui H., Zhang C., Li C., Lin L. Antimicrobial mechanism of clove oil on Listeria monocytogenes. Food Control. 2018;94:140–146. doi:10.1016/j.foodcont.2018.07.007. [CrossRef] [Google Scholar]

77. Li W., Chen H., He Z., Han C., Liu S., Li Y. Influence of surfactant and oil composition on the stability and antibacterial activity of eugenol nanoemulsions. LWT-Food Sci. Technol. 2015;62:39–47. doi:10.1016/j.lwt.2015.01.012. [CrossRef] [Google Scholar]

78. Nikousaleh A., Prakash J. Antioxidant components and properties of dry heat treated clove in different extraction solvents. J. Food Sci. Technol. 2016;53:1993–2000. doi:10.1007/s13197-015-2113-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Jahanian E. Clove bud oil; a novel herbal medicine for future kidney researches. Ann. Res. Antioxid. 2016;1:27–29. [Google Scholar]

80. Jirovetz L., Buchbauer G., Stoilova I., Stoyanova A., Krastanov A., Schmidt E. Chemical composition and antioxidant properties of clove leaf essential oil. J. Agric. Food Chem. 2006;54:6303–6307. doi:10.1021/jf060608c. [PubMed] [CrossRef] [Google Scholar]

81. Gülçin İ., Elmastaş M., Aboul-Enein H.Y. Antioxidant activity of clove oil–A powerful antioxidant source. Arab. J. Chem. 2012;5:489–499. doi:10.1016/j.arabjc.2010.09.016. [CrossRef] [Google Scholar]

82. Adefegha S.A., Oboh G., Oyeleye S.I., Osunmo K. Alteration of starch hydrolyzing enzyme inhibitory properties, antioxidant activities, and phenolic profile of clove buds (Syzygium aromaticum L.) by cooking duration. Food Sci. Nutr. 2016;4:250–260. doi:10.1002/fsn3.284. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Akthar M.S., Degaga B., Azam T. Antimicrobial activity of essential oils extracted from medicinal plants against the pathogenic microorganisms: A review. Issues Bio. Sci. Pharma. Res. 2014;2:001–007. [Google Scholar]

84. Jaiswal S., Rajwade D. A Review on Portulaca oleracea (Nonia bhaji): A wonderful weed of Chhattisgarh. Res. J. Pharm Technol. 2017;10:2415–2420. doi:10.5958/0974-360X.2017.00426.7. [CrossRef] [Google Scholar]

85. Dong C.X., Hayashi K., Lee J.B., Hayashi T. Characterization of structures and antiviral effects of polysaccharides from Portulaca oleracea L. Chem. Pharm. Bull. 2010;58:507–510. doi:10.1248/cpb.58.507. [PubMed] [CrossRef] [Google Scholar]

86. Gismalla M.A.M. Ph.D. Thesis. University of Gezira; Wad Medani, Sudan: 2017. Antimicrobial Activity of Aqueous Methanol Extracted Rigla (Portulaca oleraceaLinn) [Google Scholar]

87. Supriya J.A., Kishor G.U., Aniket G.H. Phytochemical screening and antimicrobial activity of portulaca quadrifida linn. Asian J. Pharm Clin Res. 2019;12:78–81. doi:10.22159/ajpcr.2019.v12i3.27587. [CrossRef] [Google Scholar]

88. Khanam B., Begum W., Tipo F.A. Pharmacological profile, phytoconstituents, and traditional uses of Khurfa (Portulaca oleracea L.): Unani perspective. J. Pharm. Innov. 2019;8:367–372. [Google Scholar]

89. Londonkar R., Nayaka H.B. Phytochemical and antimicrobial activities of Portulaca oleracea L. J. Pharm. Res. 2011;4:3553–3555. [Google Scholar]

90. Masoodi M.H., Ahmad B., Mir S.R., Zargar B.A., Tabasum N. Portulaca oleracea L. a review. J. Pharm. Res. 2011;4:3044–3048. [Google Scholar]

91. Yanala S.R., Sathyanarayana D., Kannan K. A Recent Phytochemical Review-Fruits of Tribulus terrestris Linn. J. Pharm. Sci. Res. 2016;8:132. [Google Scholar]

92. Chhatre S., Nesari T., Somani G., Kanchan D., Sathaye S. Phytopharmacological overview of Tribulus terrestris. Pharmacogn. Rev. 2014;8:45. doi:10.4103/0973-7847.125530. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Abubakar S., Akanbi B., Etim V., Segun O., Ogbu J. Comparative study of phytochemical and synergistic anti-bacterial activity of Tribulus terrestris (L.) and Pandiaka heudelotii (Moq.) Hien on some clinical bacterial isolates. Pharm. Biol. Eval. 2016;3:83–91. [Google Scholar]

94. Usman H., Abdulrahman F.I., Ladan A.H. Phytochemical and antimicrobial evaluation of Tribulus terrestris L. (Zygophylaceae). growing in Nigeria. Res. J. Bio. Sci. 2007;2:244–247. [Google Scholar]

95. Batoei S., Mahboubi M., Yari R. Antibacterial activity of Tribulus terrestris methanol extract against clinical isolates of Escherichia coli. Herba Pol. 2016;62:57–66. doi:10.1515/hepo-2016-0011. [CrossRef] [Google Scholar]

96. Othman L., Sleiman A., Abdel-Massih R.M. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front. Microbial. 2019;10:911. doi:10.3389/fmicb.2019.00911. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Al-Bayati F.A., Al-Mola H.F. Antibacterial and antifungal activities of different parts of Tribulus terrestris L. growing in Iraq. J. Zhejiang Univ. Sci. 2008;9:154–159. doi:10.1631/jzus.B0720251. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Satvati S.A.R., Shooriabi M., Amin M., Shiezadeh F. Evaluation of the Antimicrobial activity of Tribulus terrestris, Allium sativum, Salvia officinalis, and Allium hirtifolium Boiss against Enterococcus faecalis. Int. J. Enteric. Pathog. 2017;5:63–67. [Google Scholar]

99. Zheleva-Dimitrova D., Obreshkova D., Nedialkov P. Antioxidant activity of tribulus terrestris—A natural product in infertility therapy. Int. J. Pharm Pharm Sci. 2012;4:508–511. [Google Scholar]

100. Farooq S.A., Farook T.T., Al-Rawahy S.H. Natural Products and Their Active Compounds on Disease Prevention. Nova Science Publishers; Hauppauge, NY, USA: 2012. Bioactive compounds from Tribulus Terrestris L. (zygophyllaceae) pp. 245–268. [Google Scholar]

101. Hifnawy M.S., AbouZid S.F., Ali Z.Y., Fouda M.M. Phenolic contents and in vitro free radical scavenging activity of alcoholic extract of the fruits of Tribulus terrestris L. Pharm. Innov. 2015;4:92. [Google Scholar]

102. Ligor M., Ratiu I.A., Kiełbasa A., Al-Suod H., Buszewski B. Extraction approaches used for the determination of biologically active compounds (cycl*tols, polyphenols and saponins) isolated from plant material. Electrophoresis. 2018;39:1860–1874. doi:10.1002/elps.201700431. [PubMed] [CrossRef] [Google Scholar]

103. Ivanišová E., Farkaš A., Frančáková H., Kačániová M. Antioxidant activity and total polyphenol content of medicinal herbs with adaptogenic effect to human body. J. Anim. Sci. Biotechnol. 2018;51:119–123. Scientific papers. [Google Scholar]

104. Ali S.I., Gaafar A.A., Abdallah A.A., El-Daly S.M., El-Bana M., Hussein J. Mitigation of Alpha-Cypermethrin-Induced hepatotoxicity in rats by Tribulus terrestris rich in antioxidant compounds. Jordan J. Biol. Sci. 2018;11:5. [Google Scholar]

105. Song Y.H., Kim D.W., Curtis-Long M.J., Park C., Son M., Kim J.Y., Yuk H.J., Lee K.W., Park K.H. Cinnamic acid amides from Tribulus terrestris displaying uncompetitive α-glucosidase inhibition. Eur. J. Med. Chem. 2016;114:201–208. doi:10.1016/j.ejmech.2016.02.044. [PubMed] [CrossRef] [Google Scholar]

106. Aleksandrovna S.E., Mikhailovna E.L., Alexeevich K.D. Experience of introduction of two species of Eryngium in the North Caucasus. Pharmacogn. J. 2018;10:6. doi:10.5530/pj.2018.6s.11. [CrossRef] [Google Scholar]

107. Meindl C., Brune V., Listl D., Poschlod P., Reisch C. Survival and postglacial immigration of the steppe plant Scorzonera purpurea to Central Europe. Plant. Syst. Evol. 2016;302:971–984. doi:10.1007/s00606-016-1311-9. [CrossRef] [Google Scholar]

108. Kikowska M., Thiem B., Sliwinska E., Rewers M., Kowalczyk M., Stochmal A., Długaszewska J. Micropropagation of Eryngium campestre L. via shoot culture provides valuable uniform plant material with enhanced content of phenolic acids and antimicrobial activity. Acta Biol. Cracov. Bot. 2016;58:43–56. doi:10.1515/abcsb-2016-0009. [CrossRef] [Google Scholar]

109. Kikowska M., Długaszewska J., Kubicka M.M., Kędziora I., Budzianowski J., Thiem B. In vitro antimicrobial activity of extracts and their fractions from three Eryngium L. species. Herba Pol. 2016;62:67–77. doi:10.1515/hepo-2016-0012. [CrossRef] [Google Scholar]

110. Erdem S.A., Nabavi S.F., Orhan I.E., Daglia M., Izadi M., Nabavi S.M. Blessings in disguise: A review of phytochemical composition and antimicrobial activity of plants belonging to the genus Eryngium. DARU J. Pharm. Sci. 2015;23:53. doi:10.1186/s40199-015-0136-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Daneshzadeh M.S., Abbaspour H., Amjad L., Nafchi A.M. An investigation on phytochemical, antioxidant and antibacterial properties of extract from Eryngium billardieri F. Delaroche. J. Food Meas. Charact. 2020;14:708–715. doi:10.1007/s11694-019-00317-y. [CrossRef] [Google Scholar]

112. Benmerache A., Magid A.A., Berrehal D., Kabouche A., Voutquenne-Nazabadioko L., Messaili S., Abedinib A., Harakatc D., Kabouche Z. Chemical composition, antibacterial, antioxidant and tyrosinase inhibitory activities of glycosides from aerial parts of Eryngium tricuspidatum L. Phytochem. Lett. 2016;18:23–28. doi:10.1016/j.phytol.2016.08.018. [CrossRef] [Google Scholar]

113. Rjeibi I., Saad A.B., Ncib S., Souid S. Phenolic composition and antioxidant properties of Eryngium maritimum (sea holly) J. Coast. Life Med. 2017;5:212–215. doi:10.12980/jclm.5.2017J7-18. [CrossRef] [Google Scholar]

114. Paşayeva L., Şafak E.K., Arıgün T., Fatullayev H., Tugay O. In vitro antioxidant capacity and phytochemical characterization of Eryngium kotschyi Boiss. J. Pharm. Pharmacogn. Res. 2020;8:18–31. [Google Scholar]

115. Traversier M., Gaslonde T., Lecso M., Michel S., Delannay E. Comparison of extraction methods for chemical composition, antibacterial, depigmenting and antioxidant activity of Eryngium maritimum. Int. J. Cosmet. Sci. 2020;42:127–135. doi:10.1111/ics.12595. [PubMed] [CrossRef] [Google Scholar]

116. Dalukdeniya D.A.C.K., Rathnayaka R. Comparative study on antibacterial and selected antioxidant activities of different Eryngium Foetidum extracts. J. Appl Life Sci. Int. 2017;12:1–7. doi:10.9734/JALSI/2017/34378. [CrossRef] [Google Scholar]

117. Kikowska M., Kalemba D., Dlugaszewska J., Thiem B. Chemical composition of essential oils from rare and endangered species—Eryngium maritimum L. and E. alpinum L. Plants. 2020;9:417. doi:10.3390/plants9040417. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Azad R., Kumara K.W., Senanayake G., Ranawaka R., Pushpakumara D., Geekiyanage S. Flower morphological diversity of cinnamon (Cinnamomum verum Presl) in Matara District, Sri Lanka. Open Agric. 2018;3:236–244. doi:10.1515/opag-2018-0025. [CrossRef] [Google Scholar]

119. Maridass M. Evaluation of brine shrimp lethality of Cinnamomum species. Ethnobotanical. Leaflets. 2008;2008:106. [Google Scholar]

120. Razali Z., Muhammad N.A.I., Salleh S.N.M. Cinnamaldehyde Constituent and Screening of Antibacterial Potential in Local Cinnamomum Zeylanicum Bark Zainab. J. Intelek. 2016;11:1. [Google Scholar]

121. Ribeiro-Santos R., Andrade M., Madella D., Martinazzo A.P., Moura L.D.A.G., de Melo N.R., Sanches-Silva A. Revisiting an ancient spice with medicinal purposes: Cinnamon. Trends Food Sci. Tech. 2017;62:154–169. doi:10.1016/j.tifs.2017.02.011. [CrossRef] [Google Scholar]

122. Sharafeldin K., Rizvi M.R. Effect of traditional plant medicines (Cinnamomum zeylanicum and Syzygium cumini) on oxidative stress and insulin resistance in streptozotocin-induced diabetic rats. J. Basic Appl. Zool. 2015;72:126–134. doi:10.1016/j.jobaz.2015.09.002. [CrossRef] [Google Scholar]

123. Hamidpour R., Hamidpour M., Hamidpour S., Shahlari M. Cinnamon from the selection of traditional applications to its novel effects on the inhibition of angiogenesis in cancer cells and prevention of Alzheimer’s disease, and a series of functions such as antioxidant, anticholesterol, antidiabetes, antibacterial, antifungal, nematicidal, acaracidal, and repellent activities. J. Tradit. Complement. Med. 2015;5:66–70. [PMC free article] [PubMed] [Google Scholar]

124. Feng K., Wen P., Yang H., Li N., Lou W.Y., Zong M.H., Wu H. Enhancement of the antimicrobial activity of cinnamon essential oil-loaded electrospun nanofilm by the incorporation of lysozyme. RSC Adv. 2017;7:1572–1580. doi:10.1039/C6RA25977D. [CrossRef] [Google Scholar]

125. Chuesiang P., Siripatrawan U., Sanguandeekul R., McClements D.J., McLandsborough L. Antimicrobial activity of PIT-fabricated cinnamon oil nanoemulsions: Effect of surfactant concentration on morphology of foodborne pathogens. Food Control. 2019;98:405–411. doi:10.1016/j.foodcont.2018.11.024. [CrossRef] [Google Scholar]

126. Shabani N.R., Ismail Z., Ismail W.I., Zainuddin N., Rosdan N.H., Roslan M.N., Mohd Azahar N.M. Antimicrobial activity of cinnamon oil against bacteria that cause skin infections. J. Sci. Res. Dev. 2016;3:1–6. [Google Scholar]

127. Mazimba O., Wale K., Tebogo E., Tebogo E., Kwape Shetonde O. Cinnamomum verum: Ethylacetate and methanol extracts antioxidant and antimicrobial activity. J. Med. Plants Stud. 2015;3:28–32. [Google Scholar]

128. Mukhtar S., Ghori I. Antibacterial activity of aqueous and ethanolic extracts of garlic, cinnamon and turmeric against Escherichia coli ATCC 25922 and Bacillus subtilis DSM 3256. Int. J. Appl. Biol. Pharm. 2012;3:131–136. [Google Scholar]

129. Abbaszadegan A., Dadolahi S., Gholami A., Moein M.R., Hamedani S., Ghasemi Y., Abbott P.V. Antimicrobial and cytotoxic activity of Cinnamomum zeylanicum, Calcium Hydroxide, and triple antibiotic paste as root canal dressing materials. J. Contemp. Dent. Pract. 2016;17:105–113. doi:10.5005/jp-journals-10024-1811. [PubMed] [CrossRef] [Google Scholar]

130. Brnawi W.I., Hettiarachchy N.S., Horax R., Kumar-Phillips G., Ricke S. Antimicrobial activity of leaf and bark cinnamon essential oils against Listeria monocytogenes and Salmonella typhimurium in broth system and on celery. J. Food Process. Preserv. 2019;43:13888. doi:10.1111/jfpp.13888. [CrossRef] [Google Scholar]

131. Reyes-Jurado F., Navarro-Cruz A.R., Ochoa-Velasco C.E., Palou E., López-Malo A., Ávila-Sosa R. Essential oils in vapor phase as alternative antimicrobials: A review. Crit. Rev. Food Sci. Nutr. 2020;60:1641–1650. doi:10.1080/10408398.2019.1586641. [PubMed] [CrossRef] [Google Scholar]

132. Bouhdid S., Abrini J., Amensour M., Zhiri A., Espuny M.J., Manresa A. Functional and ultrastructural changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Cinnamomum verum essential oil. J. Appl. Microbiol. 2010;109:1139–1149. doi:10.1111/j.1365-2672.2010.04740.x. [PubMed] [CrossRef] [Google Scholar]

133. Vasconcelos N.G., Croda J., Simionatto S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb. Pathog. 2018;120:198–203. doi:10.1016/j.micpath.2018.04.036. [PubMed] [CrossRef] [Google Scholar]

134. Oussalah M., Caillet S., Lacroix M. Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157, H7 and Listeria monocytogenes. J. Food Prot. 2006;69:1046–1055. doi:10.4315/0362-028X-69.5.1046. [PubMed] [CrossRef] [Google Scholar]

135. Zhang Y., Liu X., Wang Y., Jiang P., Quek S. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control. 2016;59:282–289. doi:10.1016/j.foodcont.2015.05.032. [CrossRef] [Google Scholar]

136. Tulini F.L., Souza V.B., Thomazini M., Silva M.P., Massarioli A.P., Alencar S.M., Palloneb EM J.A., Genovesed M.I., Favaro-Trindadeb C.S. Evaluation of the release profile, stability and antioxidant activity of a proanthocyanidin-rich cinnamon (Cinnamomum zeylanicum) extract co-encapsulated with α-tocopherol by spray chilling. Food Res. Int. 2017;95:117–124. doi:10.1016/j.foodres.2017.03.010. [PubMed] [CrossRef] [Google Scholar]

137. Gulcin I., Kaya R., Goren A.C., Akincioglu H., Topal M., Bingol Z., Cetin Ç.K., Ozturk S.S.B., Durmaz L., Alwasel S. Anticholinergic, antidiabetic and antioxidant activities of cinnamon (cinnamomum verum) bark extracts: Polyphenol contents analysis by LC-MS/MS. Int. J. Food Prop. 2019;22:1511–1526. doi:10.1080/10942912.2019.1656232. [CrossRef] [Google Scholar]

138. Ervina M., Lie H.S., Diva J., Tewfik S., Tewfik I. Optimization of water extract of Cinnamomum burmannii bark to ascertain it’s in vitro antidiabetic and antioxidant activities. Biocatal. Agric. Biotechnol. 2019;19:101152. doi:10.1016/j.bcab.2019.101152. [CrossRef] [Google Scholar]

139. Vimalanathan S., Hudson J. Anti-influenza virus activity of essential oils and vapors. Am. J. Essent. Oil Nat. Prod. 2014;2:47–53. [Google Scholar]

140. Gautam R.K., Arora D., Goyal S. Science of Spices and Culinary Herbs-Latest Laboratory, Pre-Clinical, and Clinical Studies. Volume 1. Bentham Science Publishers; Sharjah, UAE: 2019. Pre-clinical/animal studies conducted on Turmeric and Curcumin and their formulations; pp. 198–225. [Google Scholar]

141. Singh D.B., Maurya A.K., Rai D. Science of Spices and Culinary Herbs-Latest Laboratory, Pre-Clinical, and Clinical Studies. Volume 1. Bentham Science Publishers; Sharjah, UAE: 2019. Antibacterial and anticancer activities of Turmeric and its active ingredient Curcumin, and mechanism of action; pp. 74–103. [Google Scholar]

142. Gitika A., Mishra R., Panda S.K., Mishra C., Sahoo P.R. Evaluation of antifungal activity of Curcumin against Aspergillus flavus. Int. J. Curr. Microbiol. Appl. Sci. 2019;8:2323–2329. doi:10.20546/ijcmas.2019.807.284. [CrossRef] [Google Scholar]

143. Neyestani Z., Ebrahimi S.A., Ghazaghi A., Jalili A., Sahebkar A., Rahimi H.R. Review of anti-bacterial activities of Curcumin against Pseudomonas aeruginosa. Crit. Rev. Eukaryot. Gene Expr. 2019;29:5. doi:10.1615/CritRevEukaryotGeneExpr.2019029088. [PubMed] [CrossRef] [Google Scholar]

144. Barzegar A., Moosavi-Movahedi A.A. Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PLoS ONE. 2011;6:e26012. doi:10.1371/journal.pone.0026012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

145. Calabrese V., Bates T.E., Mancuso C., Cornelius C., Ventimiglia B., Cambria M.T., Renzo L.D., Lorenzo A.D., Dinkova-Kostova A.T. Curcumin and the cellular stress response in free radical-related diseases. Mol. Nutr. Food Res. 2008;52:1062–1073. doi:10.1002/mnfr.200700316. [PubMed] [CrossRef] [Google Scholar]

146. Dinkova-Kostova A.T., Talalay P. Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol. Nutr. Food Res. 2008;52:S128–S138. doi:10.1002/mnfr.200700195. [PubMed] [CrossRef] [Google Scholar]

147. Abu-Rizq H.A., Mansour M.H., Safer A.M., Afzal M. Cyto-protective and immunomodulating effect of Curcuma longa in Wistar rats subjected to carbon tetrachloride-induced oxidative stress. Inflammopharmacology. 2008;16:87–95. doi:10.1007/s10787-007-1621-1. [PubMed] [CrossRef] [Google Scholar]

148. Pakfetrat M., Akmali M., Malekmakan L., Dabaghimanesh M., Khorsand M. Role of turmeric in oxidative modulation in end-stage renal disease patients. Hemodial. Int. 2015;19:124–131. doi:10.1111/hdi.12204. [PubMed] [CrossRef] [Google Scholar]

149. Karimi N., Ghanbarzadeh B., Hamishehkar H., Mehramuz B., Kafil H.S. Antioxidant, antimicrobial and physicochemical properties of turmeric extract-loaded nanostructured lipid carrier (NLC) Colloid Interfac. Sci. 2018;22:18–24. doi:10.1016/j.colcom.2017.11.006. [CrossRef] [Google Scholar]

150. Sahin K., Pala R., Tuzcu M., Ozdemir O., Orhan C., Sahin N., Juturu V. Curcumin prevents muscle damage by regulating NF-κB and Nrf2 pathways and improves performance: An in vivo model. J. Inflamm. Res. 2016;9:147. [PMC free article] [PubMed] [Google Scholar]

151. Nasir A.S., Jaffat H.S. Protective role of turmeric extract (Curcuma longa) in the lipid profile and activity of antioxidant in the male rats treated by lithium carbonate. Int. J. Pharmtech. Res. 2016;9:98–105. [Google Scholar]

152. Riaz T., Abbasi M.A., Shahzadi T., Qureshi M.Z., Khan K.M. Antioxidant Activity and Radical Scavenging Effects of Various Fractions from Curcuma zedoaria. AJPBR. 2011;1:525–533. [Google Scholar]

153. Rezaei-Moghadam A., Mohajeri D., Rafiei B., Dizaji R., Azhdari A., Yeganehzad M., Shahidi M., Mazani M. Effect of turmeric and carrot seed extracts on serum liver biomarkers and hepatic lipid peroxidation, antioxidant enzymes and total antioxidant status in rats. BioImpacts. 2012;2:151. [PMC free article] [PubMed] [Google Scholar]

154. Hay E., Lucariello A., Contieri M., Esposito T., De Luca A., Guerra G., Perna A. Therapeutic effects of turmeric in several diseases: An overview. Chem. Biol. Interact. 2019;310:108729. doi:10.1016/j.cbi.2019.108729. [PubMed] [CrossRef] [Google Scholar]

155. Chattopadhyay I., Biswas K., Bandyopadhyay U., Banerjee R.K. Turmeric and curcumin: Biological actions and medicinal applications. Curr. Sci. 2004;87:44–53. [Google Scholar]

156. Marwat S.K., Shoaib M., Khan E.A., Rehman F., Ullah H. Phytochemistry and Bioactivities of Quranic Plant, Zanjabil-Ginger (Zingiber officinale Roscoe): A Review. Am. Eurasian J. Agric. Environ. Sci. 2015;15:707–713. [Google Scholar]

157. Li H., Huang M., Tan D., Liao Q., Zou Y., Jiang Y. Effects of soil moisture content on the growth and physiological status of ginger (Zingiber officinale Roscoe) Acta Physiol. Plant. 2018;40:125. doi:10.1007/s11738-018-2698-4. [CrossRef] [Google Scholar]

158. Chan E.W., Wong S.K., Chan H.T. Alpinia zerumbet, a ginger plant with a multitude of medicinal properties: An update on its research findings. J. Chin. Pharm. 2017;15:1. doi:10.5246/jcps.2017.11.088. [CrossRef] [Google Scholar]

159. Babu K.N., Samsudeen K., Divakaran M., Pillai G.S., Sumathi V., Praveen K. Protocols for in vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants. 2nd ed. Humana Press; New York, NY, USA: 2016. Protocols for in vitro propagation, conservation, synthetic seed production, embryo rescue, microrhizome production, molecular profiling, and genetic transformation in ginger (Zingiber officinale Roscoe.) pp. 403–426. [PubMed] [Google Scholar]

160. Mashhadi N.S., Ghiasvand R., Askari G., Hariri M., Darvishi L., Mofid M.R. Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: Review of current evidence. Int. J. Prev. Med. 2013;4:36. [PMC free article] [PubMed] [Google Scholar]

161. Stoilova I., Krastanov A., Stoyanova A., Denev P., Gargova S. Antioxidant activity of a ginger extract (Zingiber officinale) Food Chem. 2007;102:764–770. doi:10.1016/j.foodchem.2006.06.023. [CrossRef] [Google Scholar]

162. Takeuchi H., Trang V.T., Morimoto N., Nishida Y., Matsumura Y., Sugiura T. Natural products and food components with anti-Helicobacter pylori activities. World J. Gastroenterol. 2014;20:8971. [PMC free article] [PubMed] [Google Scholar]

163. Shalaby M.T., Ghanem A.A., Maamon H.M. Protective effect of ginger and cactus saguaro extract against cancer formation cells. JFDS. 2016;7:487–491. doi:10.21608/jfds.2016.46069. [CrossRef] [Google Scholar]

164. Höferl M., Stoilova I., Wanner J., Schmidt E., Jirovetz L., Trifonova D., Stanchev V., Krastanov A. Composition and comprehensive antioxidant activity of ginger (Zingiber officinale) essential oil from Ecuador. Nat. Prod. Commun. 2015;10:1085–1090. doi:10.1177/1934578X1501000672. [PubMed] [CrossRef] [Google Scholar]

165. Tohma H., Gülçin İ., Bursal E., Gören A.C., Alwasel S.H., Köksal E. Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS. J. Food Meas Charact. 2017;11:556–566. doi:10.1007/s11694-016-9423-z. [CrossRef] [Google Scholar]

166. Nile S.H., Park S.W. Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Ind. Crops Prod. 2015;70:238–244. doi:10.1016/j.indcrop.2015.03.033. [CrossRef] [Google Scholar]

167. Tung B.T., Thu D.K., Thu N.T.K., Hai N.T. Antioxidant and acetylcholinesterase inhibitory activities of ginger root (Zingiber officinale Roscoe) extract. J. Complement. Integr. Med. 2017;14:14. doi:10.1515/jcim-2016-0116. [PubMed] [CrossRef] [Google Scholar]

168. Chan E.W., Lim Y.Y., Wong L.F., Lianto F.S., Wong S.K., Lim K.K., Joe C.E., Lim T.Y. Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species. Food Chem. 2008;109:477–483. doi:10.1016/j.foodchem.2008.02.016. [CrossRef] [Google Scholar]

169. De las Heras N., Valero-Muñoz M., Martín-Fernández B., Ballesteros S., López-Farré A., Ruiz-Roso B., Lahera V. Molecular factors involved in the hypolipidemic-and insulin-sensitizing effects of a ginger (Zingiber officinale Roscoe) extract in rats fed a high-fat diet. Appl. Physiol. Nutr. Metab. 2016;42:209–215. doi:10.1139/apnm-2016-0374. [PubMed] [CrossRef] [Google Scholar]

170. Adeniyi P.O., Sanusi R.A., Obatolu V.A. Effect of raw and cooked ginger (Zingiber officinale Roscoe) Extracts on insulin sensitivity in normal and high-fat diet-induced diabetic rats. J. Food Nutr. Res. 2017;5:838–843. [Google Scholar]

171. Abdulrazak A., Tanko Y., Mohammed A., Dikko A.A. Modulatory roles of clove and fermented ginger supplements on lipid profile and thyroid functions in high fat diet induced insulin resistance in rabbits. Asian J. Med. Sci. 2017;8:1–9. [Google Scholar]

172. Abdulrazaq N.B., Cho M.M., Win N.N., Zaman R., Rahman M.T. Beneficial effects of ginger (Zingiber officinale) on carbohydrate metabolism in streptozotocin-induced diabetic rats. Br. J. Nutr. 2012;108:1194–1201. doi:10.1017/S0007114511006635. [PubMed] [CrossRef] [Google Scholar]

173. Mozaffari-Khosravi H., Talaei B., Jalali B.A., Najarzadeh A., Mozayan M.R. The effect of ginger powder supplementation on insulin resistance and glycemic indices in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Complement. Ther. Med. 2014;22:9–16. doi:10.1016/j.ctim.2013.12.017. [PubMed] [CrossRef] [Google Scholar]

174. Mahluji S., Attari V.E., Mobasseri M., Payahoo L., Ostadrahimi A., Golzari S.E. Effects of ginger (Zingiber officinale) on plasma glucose level, HbA1c and insulin sensitivity in type 2 diabetic patients. Int. J. Food Sci. Nutr. 2013;64:682–686. doi:10.3109/09637486.2013.775223. [PubMed] [CrossRef] [Google Scholar]

175. Akintobi O.A., Onoh C.C., Ogele J.O., Idowu A.A., Ojo O.V., Okonko I.O. Antimicrobial activity of Zingiber officinale (ginger) extract against some selected pathogenic bacteria. Nat. Sc. 2013;11:7–15. [Google Scholar]

176. Naghsh F. Nano drug delivery study of anticancer properties on ginger using QM/MM methods. Orient J. Chem. 2015;31:465–478. doi:10.13005/ojc/310156. [CrossRef] [Google Scholar]

177. Shakya S.R. Medicinal uses of ginger (Zingiber officinale Roscoe) improves growth and enhances immunity in aquaculture. Int. J. Chem. Stud. 2015;3:83–87. [Google Scholar]

178. Dorra N., El-Berrawy M., Sallam S., Mahmoud R. Evaluation of Antiviral and Antioxidant Activity of Selected Herbal Extracts. JHIPH. 2019;49:36–40. doi:10.21608/jhiph.2019.29464. [CrossRef] [Google Scholar]

179. Piccaglia R., Marotti M., Giovanelli E., Deans S.G., Eaglesham E. Antibacterial and antioxidant properties of Mediterranean aromatic plants. Ind. Crops Prod. 1993;2:47–50. doi:10.1016/0926-6690(93)90010-7. [CrossRef] [Google Scholar]

180. Köksal E., Bursal E., Gülçin İ., Korkmaz M., Çağlayan C., Gören A.C., Alwasel S.H. Antioxidant activity and polyphenol content of Turkish thyme (Thymus vulgaris) monitored by liquid chromatography and tandem mass spectrometry. Int. J. Food Prop. 2017;20:514–525. doi:10.1080/10942912.2016.1168438. [CrossRef] [Google Scholar]

181. Martins N., Barros L., Santos-Buelga C., Silva S., Henriques M., Ferreira I.C. Decoction, infusion and hydroalcoholic extract of cultivated thyme: Antioxidant and antibacterial activities, and phenolic characterisation. Food Chem. 2015;167:131–137. doi:10.1016/j.foodchem.2014.06.094. [PubMed] [CrossRef] [Google Scholar]

182. Gavaric N., Mozina S.S., Kladar N., Bozin B. Chemical profile, antioxidant and antibacterial activity of thyme and oregano essential oils, thymol and carvacrol and their possible synergism. J. Essent. Oil-Bear Plants. 2015;18:1013–1021. doi:10.1080/0972060X.2014.971069. [CrossRef] [Google Scholar]

183. Ghaderi-Ghahfarokhi M., Barzegar M., Sahari M.A., Azizi M.H. Nanoencapsulation approach to improve antimicrobial and antioxidant activity of thyme essential oil in beef burgers during refrigerated storage. Food Bioproc. Tech. 2016;9:1187–1201. doi:10.1007/s11947-016-1708-z. [CrossRef] [Google Scholar]

184. El-Guendouz S., Aazza S., Anahi Dandlen S., Majdoub N., Lyoussi B., Raposo S., Dulce Antunes M., Gomes V., Graça Miguel M. Antioxidant activity of Thyme waste extract in O/W emulsions. Antioxidants. 2019;8:243. doi:10.3390/antiox8080243. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

185. Tohidi B., Rahimmalek M., Trindade H. Review on essential oil, extracts composition, molecular and phytochemical properties of Thymus species in Iran. Ind. Crop. Prod. 2019;134:89–99. doi:10.1016/j.indcrop.2019.02.038. [CrossRef] [Google Scholar]

186. Gömöri C., Vidács A., Kerekes E.B., Nacsa-Farkas E., Böszörményi A., Vágvölgyi C., Krisch J. Altered antimicrobial and anti-biofilm forming effect of thyme essential oil due to changes in composition. Nat. Pro. Commun. 2018;13:483–487. doi:10.1177/1934578X1801300426. [CrossRef] [Google Scholar]

187. Ahmadi R., Alizadeh A., Ketabchi S. Antimicrobial activity of the essential oil of Thymus kotschyanus grown wild in Iran. Int. J. Biosci. 2015;6:239–248. [Google Scholar]

188. Anwar M.M., Nasr E.H., Ali S.E. Effect of gamma irradiation on chemical constituents, antimicrobials and antioxidants of Thyme and Cinnamon volatile oils. Appl Radiat. Isotopes. 2015;47:125–142. [Google Scholar]

189. Santoyo S., Jaime L., García-Risco M.R., Lopez-Hazas M., Reglero G. Supercritical fluid extraction as an alternative process to obtain antiviral agents from thyme species. Ind. Crop. Prod. 2014;52:475–480. doi:10.1016/j.indcrop.2013.10.028. [CrossRef] [Google Scholar]

190. Mkaddem M., Boussaid M., Fadhel N.B. Variability of volatiles in Tunisian Mentha pulegium L.(Lamiaceae) J. Essent. Oil Res. 2007;19:211–214. doi:10.1080/10412905.2007.9699263. [CrossRef] [Google Scholar]

191. Vaghardoost R., Ghavami Y., Sobouti B. The effect of Mentha Pulegium on healing of burn wound injuries in rat. World J. Plast Surg. 2019;8:43. doi:10.29252/wjps.8.1.43. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

192. Teixeira B., Marques A., Ramos C., Batista I., Serrano C., Matos O., Neng N.R., Nogueira J.M., Saraiva J.A., Nunes M.L. European pennyroyal (Mentha pulegium) from Portugal: Chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil. Ind. Crop. Prod. 2012;36:81–87. doi:10.1016/j.indcrop.2011.08.011. [CrossRef] [Google Scholar]

193. Hassanpouraghdam M.B., Akhgari A.B., Aazami M.A., Emarat-Pardaz J. New menthone type of Mentha pulegium L. volatile oil from Northwest Iran. Zech. J. Food Sci. 2011;29:285–290. doi:10.17221/165/2009-CJFS. [CrossRef] [Google Scholar]

194. Morteza-Semnani K., Saeedi M., Akbarzadeh M. Chemical composition and antimicrobial activity of the essential oil of Mentha pulegium L. J. Essent. Oil-Bear Plants. 2011;14:208–213. doi:10.1080/0972060X.2011.10643923. [CrossRef] [Google Scholar]

195. Petrakis E.A., Kimbaris A.C., Pappas C.S., Tarantilis P.A., Polissiou M.G. Quantitative determination of pulegone in pennyroyal oil by FT-IR spectroscopy. J. Agr Food Chem. 2009;57:10044–10048. doi:10.1021/jf9026052. [PubMed] [CrossRef] [Google Scholar]

196. Sarikurkcu C., Eryigit F., Cengiz M., Tepe B., Cakir A., Mete E. Screening of the antioxidant activity of the essential oil and methanol extract of Mentha pulegium L. from Turkey. Spectrosc. Lett. 2012;45:352–358. doi:10.1080/00387010.2012.666701. [CrossRef] [Google Scholar]

197. Hadi M.Y., Hameed I.H., Ibraheam I.A. Mentha pulegium: Medicinal uses, Anti-Hepatic, Antibacterial, Antioxidant effect and Analysis of Bioactive Natural Compounds: A Review. Res. J. Pharm Technol. 2017;10:3580–3584. doi:10.5958/0974-360X.2017.00648.5. [CrossRef] [Google Scholar]

198. Salem N., Sriti J., Bachrouch O., Msaada K., Khammassi S., Hammami M. Phenological stage effect on phenolic composition and repellent potential of Mentha pulegium against Tribolium castaneum and Lasioderma serricorne. Asian Pac. J. Trop Biomed. 2018;8:207. doi:10.4103/2221-1691.231283. [CrossRef] [Google Scholar]

199. Ferreres F., Bernardo J., Andrade P.B., Sousa C., Gil-Izquierdo A., Valentão P. Pennyroyal and gastrointestinal cells: Multi-target protection of phenolic compounds against t-BHP-induced toxicity. RSC Adv. 2015;5:41576–41584. doi:10.1039/C5RA02710A. [CrossRef] [Google Scholar]

200. Abdelli M., Moghrani H., Aboun A., Maachi R. Algerian Mentha pulegium L. leaves essential oil: Chemical composition, antimicrobial, insecticidal and antioxidant activities. Ind. Crop. Prod. 2016;94:197–205. doi:10.1016/j.indcrop.2016.08.042. [CrossRef] [Google Scholar]

201. Bonyadian M., Moshtaghi H. Bacteriocidal activity of some plants essential oils against bacillus cereus, salmonella typhimurium, listeria monocytogenes and yersinia enterocolitica. Res. J. Microbiol. 2008;3:648–653. doi:10.3923/jm.2008.648.653. [CrossRef] [Google Scholar]

202. Yusuf U., Muhammad M. Antibacterial Properties of Mentha Pulegium. South. Asian Res. J. Med. Sci. 2019;1:43–45. doi:10.36346/sarjams.2019.v01i02.004. [CrossRef] [Google Scholar]

203. Rather M.A., Dar B.A., Sofi S.N., Bhat B.A., Qurishi M.A. Foeniculum vulgare: A comprehensive review of its traditional use, phytochemistry, pharmacology, and safety. Arab. J. Chem. 2016;9:S1574–S1583. doi:10.1016/j.arabjc.2012.04.011. [CrossRef] [Google Scholar]

204. Bettaieb ép Rebey I., Bourgou S., Marzouk B., Fauconnier M.L., Ksouri R. Salinity impact on seed yield, polyphenols composition and antioxidant activity of Fennel (Foeniculum vulgarae Mill) extracts. J. New Sci. 2017;2017:2610–2619. [Google Scholar]

205. Roby M.H., Sarhan M.A., Selim K.A., Khalel K.I. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.) Ind. Crop. Prod. 2013;44:437–445. doi:10.1016/j.indcrop.2012.10.012. [CrossRef] [Google Scholar]

206. Ahmed A.F., Shi M., Liu C., Kang W. Comparative analysis of antioxidant activities of essential oils and extracts of fennel (Foeniculum vulgare Mill.) seeds from Egypt and China. Food Sci. Hum. Wellness. 2019;8:67–72. doi:10.1016/j.fshw.2019.03.004. [CrossRef] [Google Scholar]

207. AbduRahim S.A., Elamin B.E., Bashir A.A., Almagboul A.Z. In vitro test of antimicrobial activity of Foeniculum Vulgare Mill. (Fennel) essential oil. J. Multidiscip. Eng. Sci. Stud. 2017;3:1609–1614. [Google Scholar]

208. Al-Hadid K.J. Quantitative analysis of antimicrobial activity of ‘Foeniculum vulgare’: A review. Plant. Omics. 2017;10:28. doi:10.21475/poj.10.01.17.322. [CrossRef] [Google Scholar]

209. Chang S., Mohammadi Nafchi A., Karim A.A. Chemical composition, antioxidant activity and antimicrobial properties of three selected varieties of Iranian fennel seeds. J. Essent. Oil Res. 2016;28:357–363. doi:10.1080/10412905.2016.1146169. [CrossRef] [Google Scholar]

210. GabAllah M., Kandeil A., Mousa A.E., Ahmed Ali M. Antiviral activity of water extracts of some medicinal and nutritive plants from the Apiaceae family. NRMJ. 2020;4:725–735. doi:10.21608/nrmj.2020.84021. [CrossRef] [Google Scholar]

211. Agatonovic-Kustrin S., Ortakand D.B., Morton D.W., Yusof A.P. Rapid evaluation and comparison of natural products and antioxidant activity in calendula, feverfew, and German chamomile extracts. J. Chromatogr. A. 2015;1385:103–110. doi:10.1016/j.chroma.2015.01.067. [PubMed] [CrossRef] [Google Scholar]

212. Stanojevic L.P., Marjanovic-Balaban Z.R., Kalaba V.D., Stanojevic J.S., Cvetkovic D.J. Chemical composition, antioxidant and antimicrobial activity of chamomile flowers essential oil (Matricaria chamomilla L.) J. Essent. Oil Bear Plants. 2016;19:2017–2028. doi:10.1080/0972060X.2016.1224689. [CrossRef] [Google Scholar]

213. Ismail M.C., Waleed S., Ibrahim K., Fakhri N.U. Synergistic interaction between Chamomile flower (Matricaria chamomilla L.) extracts and tetracycline against wound infection bacteria. Al-Nahrain J. Sci. 2013;16:191–195. doi:10.22401/JNUS.16.3.27. [CrossRef] [Google Scholar]

214. Mekonnen A., Yitayew B., Tesema A., Taddese S. In vitro antimicrobial activity of essential oil of Thymus schimperi, Matricaria chamomilla, Eucalyptus globulus, and Rosmarinus officinalis. Int. J. Microbiol. 2016;2016:8. doi:10.1155/2016/9545693. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

215. Mekinić I.G., Skroza D., Ljubenkov I., Krstulović L., Možina S.S., Katalinić V. Phenolic acids profile, antioxidant and antibacterial activity of chamomile, common yarrow and immortelle (Asteraceae) Nat. Prod. Commun. 2014;9:1745–1748. doi:10.1177/1934578X1400901222. [PubMed] [CrossRef] [Google Scholar]

216. Formisano C., Delfine S., Oliviero F., Tenore G.C., Rigano D., Senatore F. Correlation among environmental factors, chemical composition and antioxidative properties of essential oil and extracts of chamomile (Matricaria chamomilla L.) collected in Molise (South-central Italy) Ind. Crop. Prod. 2015;63:256–263. doi:10.1016/j.indcrop.2014.09.042. [CrossRef] [Google Scholar]

217. Pereira S.V., Reis R.A., Garbuio D.C., de Freitas L.A. Dynamic maceration of Matricaria chamomilla inflorescences: Optimal conditions for flavonoids and antioxidant activity. Rev. Bras. Farmacogn. 2018;28:111–117. doi:10.1016/j.bjp.2017.11.006. [CrossRef] [Google Scholar]

218. Allahverdiyev A.M., Bagirova M., Yaman S., Koc R.C., Abamor E.S., Ates S.C., Baydar S.Y., Elcicek S., Oztel O.N. Fighting Multidrug Resistance with Herbal Extracts, Essential Oils and Their Components. Academic Press; Cambridge, MA, USA: 2013. Development of new antiherpetic drugs based on plant compounds; pp. 245–259. [Google Scholar]

219. Bajaj S., Urooj A., Prabhasankar P. Antioxidative properties of mint (Mentha spicata L.) and its application in biscuits. Curr. Res. Nutr. Food Sci. 2016;4:209–216. doi:10.12944/CRNFSJ.4.3.07. [CrossRef] [Google Scholar]

220. Prakash O., Chandra M., Pant A.K., Rawat D.S. Essential Oils in Food Preservation, Flavor and Safety. Academic Press; Cambridge, MA, USA: 2016. Mint (Mentha spicata L.) Oils; pp. 561–572. [Google Scholar]

221. Singh R., Shushni M.A., Belkheir A. Antibacterial and antioxidant activities of Mentha piperita L. Arab. J. Chem. 2015;8:322–328. doi:10.1016/j.arabjc.2011.01.019. [CrossRef] [Google Scholar]

222. Ben Haj Yahia I., Bouslimi W., Messaoud C., Jaouadi R., Boussaid M., Zaouali Y. Comparative evaluation of Tunisian Mentha L. species essential oils: Selection of potential antioxidant and antimicrobial agents. J. Essent. Oil Res. 2019;31:184–195. doi:10.1080/10412905.2018.1550021. [CrossRef] [Google Scholar]

223. Benabdallah A., Rahmoune C., Boumendjel M., Aissi O., Messaoud C. Total phenolic content and antioxidant activity of six wild Mentha species (Lamiaceae) from northeast of Algeria. Asian Pac. J. Trop. 2016;6:760–766. doi:10.1016/j.apjtb.2016.06.016. [CrossRef] [Google Scholar]

224. Merat S., Khalili S., Mostajabi P., Ghorbani A., Ansari R., Malekzadeh R. The effect of enteric-coated, delayed-release peppermint oil on irritable bowel syndrome. Dig. Dis. Sci. 2010;55:1385–1390. doi:10.1007/s10620-009-0854-9. [PubMed] [CrossRef] [Google Scholar]

225. Džamić A.M., Soković M.D., Ristić M.S., Novaković M., Grujić-Jovanović S., Tešević V., Marin P.D. Antifungal and antioxidant activity of Mentha longifolia (L.) Hudson (Lamiaceae) essential oil. Bot Serb. 2010;34:57–61. [Google Scholar]

226. Elmastas M., Telci İ., Akşit H., Erenler R. Comparison of total phenolic contents and antioxidant capacities in mint genotypes used as spices. Turk. J. Bioch. 2015;40:456–462. doi:10.1515/tjb-2015-0034. [CrossRef] [Google Scholar]

227. Stringaro A., Colone M., Angiolella L. Antioxidant, antifungal, antibiofilm, and cytotoxic activities of Mentha spp. essential oils. Medicines. 2018;5:112. doi:10.3390/medicines5040112. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

228. Talei G.R., Mohammadi M., Bahmani M., Kopaei M.R. Synergistic effect of Carum copticum and Mentha piperita essential oils with ciprofloxacin, vancomycin, and gentamicin on Gram-negative and Gram-positive bacteria. Int. J. Pharm. Investig. 2017;7:82. [PMC free article] [PubMed] [Google Scholar]

229. Lim H.W., Kim H., Kim J., Bae D., Song K.Y., Chon J.W., Lee J.M., Kim S.H., Kim D.H., Seo K.H. Antimicrobial effect of Mentha piperita (Peppermint) oil against Bacillus cereus, Staphylococcus aureus, Cronobacter sakazakii, and Salmonella Enteritidis in various dairy foods: Preliminary study. J. Milk Sci. Biotechnol. 2018;36:146–154. doi:10.22424/jmsb.2018.36.3.146. [CrossRef] [Google Scholar]

230. Anwar F., Abbas A., Mehmood T., Gilani A.H., Rehman N.U. Mentha: A genus rich in vital nutra-pharmaceuticals—A review. Phytother. Res. 2019;33:2548–2570. doi:10.1002/ptr.6423. [PubMed] [CrossRef] [Google Scholar]

231. Chan Y.S., Cheng L.N., Wu J.H., Chan E., Kwan Y.W., Lee S.M., Leung G.P., Yu P.H., Chan S.W. A review of the pharmacological effects of Arctium lappa (burdock) Inflammopharmacology. 2011;19:245–254. doi:10.1007/s10787-010-0062-4. [PubMed] [CrossRef] [Google Scholar]

232. Rodriguez J.M., de Souza A.R., Krüger R.L., Bombardelli M.C., Machado C.S., Corazza M.L. Kinetics, composition and antioxidant activity of burdock (Arctium lappa) root extracts obtained with supercritical CO2 and co-solvent. J. Supercrit. Fluids. 2018;135:25–33. doi:10.1016/j.supflu.2017.12.034. [CrossRef] [Google Scholar]

233. Ku M.K., Liu H.C., Lin S.R. Efficacy analysis of preserved great burdock essence compounds. Biomark Genom. Med. 2013;5:67–70. doi:10.1016/j.gmbhs.2013.04.002. [CrossRef] [Google Scholar]

234. Lou Z., Li C., Kou X., Yu F., Wang H., Smith G.M., Zhu S. Antibacterial, antibiofilm effect of Burdock (Arctium lappa L.) leaf fraction and its efficiency in meat preservation. J. Food Prot. 2016;79:1404–1409. doi:10.4315/0362-028X.JFP-15-576. [PubMed] [CrossRef] [Google Scholar]

235. Kim Y.S., Kim S.H. Physicochemical and antioxidant characteristics of hot water extracts on pre-treatment conditions of Burdock (Arctium lappa L.) J. Korean Soc. Food Sci. Nutr. 2018;47:612–619. doi:10.3746/jkfn.2018.47.6.612. [CrossRef] [Google Scholar]

236. Yen C.H., Chiu H.F., Huang S.Y., Lu Y.Y., Han Y.C., Shen Y.C., Venkatakrishnan K., Wang C.K. Beneficial effect of Burdock complex on asymptomatic Helicobacter pylori-infected subjects: A randomized, double-blind placebo-controlled clinical trial. Helicobacter. 2018;23:e12469. doi:10.1111/hel.12469. [PubMed] [CrossRef] [Google Scholar]

237. Tian K., Wang J., Zhang Z., Cheng L., Jin P., Singh S., Prior B.A., Wang Z.X. Enzymatic preparation of fructooligosaccharides-rich burdock syrup with enhanced antioxidative properties. Electron. J. Biotechnol. 2019;40:71–77. doi:10.1016/j.ejbt.2019.04.009. [CrossRef] [Google Scholar]

238. Ahangarpour A., Oroojan A.A., Heidari H., Ghaedi E., Taherkhani R. Effects of hydro-alcoholic extract from arctium Lappa L. (Burdock) root on gonadotropins, testosterone, and sperm count and viability in male mice with nicotinamide/streptozotocin-induced type 2 diabetes. Malays. J. Med. Sci. 2015;22:25. [PMC free article] [PubMed] [Google Scholar]

239. Park M.Y., Park Y.O., Park Y.H. Antioxidant activities of Burdock root (Arctium lappa L.) with various heat treatment conditions. J. Korean Soc. Food Cult. 2018;33:78–85. [Google Scholar]

240. Petkova N., Ivanova L., Filova G., Ivanov I., Denev P. Antioxidants and carbohydrate content in infusions and microwave extracts from eight medicinal plants. J. Appl Pharm Sci. 2017;7:055–061. [Google Scholar]

241. Pirvu L., Nicorescu I., Hlevca C., Albu B., Nicorescu V. Burdock (Arctium lappa) leaf extracts increase the in vitro antimicrobial efficacy of common antibiotics on gram-positive and gram-negative bacteria. Open Chem. J. 2017;15:92–102. doi:10.1515/chem-2017-0012. [CrossRef] [Google Scholar]

242. Tonea A., Mandra Badea L.O., Sava S., Vodnar D. Antibacterial and antifungal activity of endodontic intracanal medications. Clujul. Med. 2017;90:344. doi:10.15386/cjmed-750. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

243. Keyhanfar M., Nazeri S., Bayat M. Evaluation of antibacterial activities of some medicinal plants, traditionally used in Iran. Iran. J. Pharm Sci. 2012;8:353–358. [Google Scholar]

244. Boulekbache-Makhlouf L., Slimani S., Madani K. Total phenolic content, antioxidant and antibacterial activities of fruits of Eucalyptus globulus cultivated in Algeria. Ind. Crops Prod. 2013;41:85–89. doi:10.1016/j.indcrop.2012.04.019. [CrossRef] [Google Scholar]

245. Harkat-Madouri L., Asma B., Madani K., Said Z.B., Rigou P., Grenier D., Allalou H., Remini H., Adjaoud A., Boulekbache-Makhlouf L. Chemical composition, antibacterial and antioxidant activities of essential oil of Eucalyptus globulus from Algeria. Ind. Crop. Prod. 2015;78:148–153. doi:10.1016/j.indcrop.2015.10.015. [CrossRef] [Google Scholar]

246. De Mendonça Braga N.S., da Costa Silva M., Cunha A.L., Goulart A.E., Sant’Ana L.L., dos Santos A.F. Chemical characterization and biological potential of the essential oil of Eucalyptus globulus Labill. J. Pharm Pharmacol. 2018;6:979–988. doi:10.17265/2328-2150/2018.12.001. [CrossRef] [Google Scholar]

247. Guleria S., Tiku A.K., Gupta S., Singh G., Koul A., Razdan V.K. Chemical composition, antioxidant activity and inhibitory effects of essential oil of Eucalyptus teretecornis grown in north-western Himalaya against Alternaria alternata. J. Plant. Biochem. Biot. 2012;21:44–50. doi:10.1007/s13562-011-0073-2. [CrossRef] [Google Scholar]

248. Singh H.P., Kaur S., Negi K., Kumari S., Saini V., Batish D.R., Kohli R.K. Assessment of in vitro antioxidant activity of essential oil of Eucalyptus citriodora (lemon-scented Eucalypt; Myrtaceae) and its major constituents. LWT-Food Sci. Technol. 2012;48:237–241. doi:10.1016/j.lwt.2012.03.019. [CrossRef] [Google Scholar]

249. Al-Ghzi S.H. Evaluation the hypoglycemic activity and anti-oxidative potential of polyphenol extract of eucalyptus. J. Thi-Qar Sci. 2012;3:107–116. [Google Scholar]

250. Amakura Y., Yoshimura M., Sugimoto N., Yamazaki T., Yoshida T. Marker constituents of the natural antioxidant Eucalyptus leaf extract for the evaluation of food additives. Biosci. Biotechnol. Biochem. 2009;73:1060. doi:10.1271/bbb.80832. [PubMed] [CrossRef] [Google Scholar]

251. Gilles M., Zhao J., An M., Agboola S. Chemical composition and antimicrobial properties of essential oils of three Australian Eucalyptus species. Food Chem. 2010;119:731–737. doi:10.1016/j.foodchem.2009.07.021. [CrossRef] [Google Scholar]

252. Chaves T.P., Pinheiro R.E., Melo E.S., Soares M.J., Souza J.S., de Andrade T.B., de Lemos T.L., Coutinho H.D. Essential oil of Eucalyptus camaldulensis Dehn potentiates β-lactam activity against Staphylococcus aureus and Escherichia coli resistant strains. Ind. Crop. Prod. 2018;112:70–74. doi:10.1016/j.indcrop.2017.10.048. [CrossRef] [Google Scholar]

253. Dhakad A.K., Pandey V.V., Beg S., Rawat J.M., Singh A. Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: A review. J. Sci. Food Agric. 2018;98:833–848. doi:10.1002/jsfa.8600. [PubMed] [CrossRef] [Google Scholar]

254. Mishra A.K., Sahu N., Mishra A., Ghosh A.K., Jha S., Chattopadhyay P. Phytochemical screening and antioxidant activity of essential oil of Eucalyptus leaf. Pharmacogn. J. 2010;2:25–28. doi:10.1016/S0975-3575(10)80045-8. [CrossRef] [Google Scholar]

255. Brezáni V., Leláková V., Hassan S.T., Berchová-Bímová K., Nový P., Klouček P., Maršík P., Dall’Acqua S., Hošek J., Šmejkal K. Anti-infectivity against herpes simplex virus and selected microbes and anti-inflammatory activities of compounds isolated from Eucalyptus globulus Labill. Viruses. 2018;10:360. doi:10.3390/v10070360. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

256. Sadatrasul M.S., Fiezi N., Ghasemian N., Shenagari M., Esmaeili S., Jazaeri E.O., Abdoli A., Jamali A. Oil-in-water emulsion formulated with eucalyptus leaves extract inhibit influenza virus binding and replication in vitro. AIMS Microbiol. 2017;3:899. doi:10.3934/microbiol.2017.4.899. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

257. Timoszuk M., Bielawska K., Skrzydlewska E. Evening primrose (Oenothera biennis) biological activity dependent on chemical composition. Antioxidants. 2018;7:108. doi:10.3390/antiox7080108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

258. Pająk P., Socha R., Broniek J., Królikowska K., Fortuna T. Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chem. 2019;275:69–76. doi:10.1016/j.foodchem.2018.09.081. [PubMed] [CrossRef] [Google Scholar]

259. Sielicka M., Małecka M. Enhancement of oxidative stability of flaxseed oil through flaxseed, evening primrose and black cumin cake extracts. J. Food Process. Preserv. 2017;41:13070. doi:10.1111/jfpp.13070. [CrossRef] [Google Scholar]

260. Kolivand M., Aghajani Z. Effects of drought stress on the components of the essential oil of evening primrose (Oenothera macrocarpa) and determination of the biological activities of its extracts. Bulg Chem. Commun. 2016;48:636–640. [Google Scholar]

261. Sałaga M., Lewandowska U., Sosnowska D., Zakrzewski P.K., Cygankiewicz A.I., Piechota-Polańczyk A., Sobczak M., Mosinska P., Chen C., Krajewska W.M., et al. Polyphenol extract from evening primrose pomace alleviates experimental colitis after intracolonic and oral administration in mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2014;387:1069–1078. doi:10.1007/s00210-014-1025-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

262. Zaugg J., Potterat O., Plescher A., Honermeier B., Hamburger M. Quantitative analysis of anti-inflammatory and radical scavenging triterpenoid esters in evening primrose seeds. J. Agric. Food Chem. 2006;54:6623–6628. doi:10.1021/jf0611466. [PubMed] [CrossRef] [Google Scholar]

263. Peschel W., Dieckmann W., Sonnenschein M., Plescher A. High antioxidant potential of pressing residues from evening primrose in comparison to other oilseed cakes and plant antioxidants. Ind. Crop. Prod. 2007;25:44–54. doi:10.1016/j.indcrop.2006.07.002. [CrossRef] [Google Scholar]

264. Mardani V., Alami M., Arabshahi S., Khodabakhshi R., Ghaderi M. Evaluating antioxidant and antimicrobial activities of phenolic essences extracted from Evening Primrose (Oenothera Biennis) flowers. Iran. Food Sci. Technol. Res. J. 2013;9:182–189. [Google Scholar]

265. Marzouk M.S., Moharram F.A., El Dib R.A., El-Shenawy S.M., Tawfike A.F. Polyphenolic profile and bioactivity study of Oenothera speciosa Nutt. aerial parts. Molecules. 2009;14:1456–1467. doi:10.3390/molecules14041456. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

266. Majdinasab N., Namjoyan F., Taghizadeh M., Saki H. The effect of evening primrose oil on fatigue and quality of life in patients with multiple sclerosis. Neuropsychiatr. Dis. Treat. 2018;14:1505. doi:10.2147/NDT.S149403. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

267. Lodhia M.H., Bhatt K.R., Thaker V.S. Antibacterial activity of essential oils from palmarosa, evening primrose, lavender and tuberose. Indian J. Pharm. Sci. 2009;71:134. [PMC free article] [PubMed] [Google Scholar]

268. Burzynska-Pedziwiatr I., Bukowiecka-Matusiak M., Wojcik M., Machala W., Bienkiewicz M., Spolnik G., Danikiewicz W., Wozniak L.A. Dual stimulus-dependent effect of Oenothera paradoxa extract on the respiratory burst in human leukocytes: Suppressing for Escherichia coli and phorbol myristate acetate and stimulating for formyl-methionyl-leucyl-phenylalanine. Oxid. Med. Cell Longev. 2014;2014:1–13. doi:10.1155/2014/764367. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

269. Senanayake S.N., Shahidi F. Incorporation of docosahexaenoic acid (DHA) into evening primrose (Oenothera biennis L.) oil via lipase-catalyzed transesterification. Food Chem. 2004;85:489–496. doi:10.1016/S0308-8146(02)00412-0. [CrossRef] [Google Scholar]

270. Jamilian M., Karamali M., Taghizadeh M., Sharifi N., Jafari Z., Memarzadeh M.R., Mahlouji M., Asemi Z. Vitamin D and evening primrose oil administration improve glycemia and lipid profiles in women with gestational diabetes. Lipids. 2016;51:349–356. doi:10.1007/s11745-016-4123-3. [PubMed] [CrossRef] [Google Scholar]

271. Sayegh F., Elazzazy A., Bellou S., Moustogianni A., Elkady A.I., Baeshen M.N., Aggelis G. Production of polyunsaturated single cell oils possessing antimicrobial and anticancer properties. Ann. Microbiol. 2016;66:937–948. doi:10.1007/s13213-015-1176-0. [CrossRef] [Google Scholar]

272. Ratz-Łyko A., Herman A., Arct J., Pytkowska K. Evaluation of antioxidant and antimicrobial activities of Oenothera biennis, Borago officinalis, and Nigella sativa seedcake extracts. Food Sci. Biotechnol. 2014;23:1029–1036. doi:10.1007/s10068-014-0140-2. [CrossRef] [Google Scholar]

273. Gomez-Flores R., Reyna-Martínez R., Tamez-Guerra P., Quintanilla-Licea R. Antibacterial activity of Oenothera rosea (L’Hér) leaf extracts. J. Adv. Med. Med. Res. 2012;2:396–404. doi:10.9734/BJMMR/2012/1480. [CrossRef] [Google Scholar]

274. Matsumoto-Nakano M., Nagayama K., Kitagori H., Fujita K., Inagaki S., Takashima Y., amesada M., Kawabata S., Ooshima T. Inhibitory effects of Oenothera biennis (evening primrose) seed extract on Streptococcus mutans and S. mutans-induced dental caries in rats. Caries Res. 2011;45:56–63. doi:10.1159/000323376. [PubMed] [CrossRef] [Google Scholar]

275. Boneza M.M., Niemeyer E.D. Cultivar affects the phenolic composition and antioxidant properties of commercially available lemon balm (Melissa officinalis L.) varieties. Ind. Crop. Prod. 2018;112:783–789. doi:10.1016/j.indcrop.2018.01.003. [CrossRef] [Google Scholar]

276. Bogdanovic A., Tadic V., Arsic I., Milovanovic S., Petrovic S., Skala D. Supercritical and high pressure subcritical fluid extraction from Lemon balm (Melissa officinalis L., Lamiaceae) J. Supercrit. Fluid. 2016;107:234–242. doi:10.1016/j.supflu.2015.09.008. [CrossRef] [Google Scholar]

277. Said-Al Ahl H.A., Sabra A.S., Gendy A.S., Astatkie T. Essential oil content and concentration of constituents of Lemon Balm (Melissa officinalis L.) at different harvest dates. J. Essent. Oil-Bear Plants. 2018;21:1410–1417. doi:10.1080/0972060X.2018.1553636. [CrossRef] [Google Scholar]

278. Rostami H., Kazemi M., Shafiei S. Antibacterial activity of Lavandula officinalis and Melissa officinalis against some human pathogenic bacteria. Asian J. Biochem. 2012;7:133–142. doi:10.3923/ajb.2012.133.142. [CrossRef] [Google Scholar]

279. Bağdat R.B., Coşge B. The essential oil of lemon balm (Melissa officinalis L.), its components and using fields. J. Fac. Agric. OMU. 2006;21:116–121. [Google Scholar]

280. Abdel-Naime W.A., Fahim J.R., Fouad M.A., Kamel M.S. Antibacterial, antifungal, and GC–MS studies of Melissa officinalis. S Afr. J. Bot. 2019;124:228–234. doi:10.1016/j.sajb.2019.05.011. [CrossRef] [Google Scholar]

281. Moradkhani H., Sargsyan E., Bibak H., Naseri B., Sadat-Hosseini M., Fayazi-Barjin A., Meftahizade H. Melissa officinalis L., a valuable medicine plant: A review. J. Med. Plant. Res. 2010;4:2753–2759. [Google Scholar]

282. Duda S.C., Mărghitaş L.A., Dezmirean D., Duda M., Mărgăoan R., Bobiş O. Changes in major bioactive compounds with antioxidant activity of Agastache foeniculum, Lavandula angustifolia, Melissa officinalis and Nepeta cataria: Effect of harvest time and plant species. Ind. Crop. Prod. 2015;77:499–507. doi:10.1016/j.indcrop.2015.09.045. [CrossRef] [Google Scholar]

283. Luño V., Gil L., Olaciregui M., Jerez R.A., de Blas I., Hozbor F. Antioxidant effect of lemon balm (Melissa officinalis) and mate tea (Ilex paraguensys) on quality, lipid peroxidation and DNA oxidation of cryopreserved boar epididymal spermatozoa. Andrologia. 2015;47:1004–1011. doi:10.1111/and.12370. [PubMed] [CrossRef] [Google Scholar]

284. Mustafa A.K., Ali M. New steroidal lactones and hom*omonoterpenic glucoside from fruits of Malva sylvestris L. Acta Pol. Pharm. 2011;68:393–401. [PubMed] [Google Scholar]

285. Walter C.Y., Shinwari Z.K., Afzal I.M., Malik R.N. Antibacterial activity in herbal products used in Pakistan. Pak. J. Bot. 2011;43:155–162. [Google Scholar]

286. Zare P., Mahmoudi R., Shadfar S., Ehsani A., Afrazeh Y., Saeedan A., Niyazpour F., Pourmand B.S. Efficacy of chloroform, ethanol and water extracts of medicinal plants, Malva sylvestris and Malva neglecta on some bacterial and fungal contaminants of wound infections. J. Med. Plants Res. 2012;6:4550–4552. [Google Scholar]

287. Misak J.A., Mohammed H.J., Malik S.N. Screening of antibacterial properties for some Iraqi plants against Salmonella typhimurium. Iraqi J. Vet. Sci. 2011;35:28–35. [Google Scholar]

288. Delfine S., Marrelli M., Conforti F., Formisano C., Rigano D., Menichini F., Senatore F. Variation of Malva sylvestris essential oil yield, chemical composition and biological activity in response to different environments across Southern Italy. Ind. Crop. Prod. 2017;98:29–37. doi:10.1016/j.indcrop.2017.01.016. [CrossRef] [Google Scholar]

289. Sharifi-Rad J., Melgar-Lalanne G., Hernández-Álvarez A.J., Taheri Y., Shaheen S., Kregiel D., Antolak H., Pawlikowska E., Brdar-Jokanović M., Rajkovic J., et al. Malva species: Insights on its chemical composition towards pharmacological applications. Phytother. Res. 2020;34:546–567. doi:10.1002/ptr.6550. [PubMed] [CrossRef] [Google Scholar]

290. Petkova N., Popova A., Alexieva I. Antioxidant properties and some phytochemical components of the edible medicinal Malva sylvestris L. J. Med. Plant. Res. 2019;7:96–99. [Google Scholar]

291. Cecotti R., Bergomi P., Carpana E., Tava A. Chemical characterization of the volatiles of leaves and flowers from cultivated Malva sylvestris var. mauritiana and their antimicrobial activity against the aetiological agents of the European and American foulbrood of honeybees (Apis mellifera) Nat. Prod. Commun. 2016;11:1527–1530. doi:10.1177/1934578X1601101026. [PubMed] [CrossRef] [Google Scholar]

292. DellaGreca M., Cutillo F., Abrosca B.D., Fiorentino A., Pacifico S., Zarrelli A. Antioxidant and radical scavenging properties of Malva sylvestris. Nat. Prod. Commun. 2009;4:893–896. doi:10.1177/1934578X0900400702. [PubMed] [CrossRef] [Google Scholar]

293. Anuradha J., Muhtari K., Lone H., Tripathi S., Sanjeevi R. Potentials of herbs on the rescue of influenza prevention and control. J. Chem. Chem. Sci. 2018;8:898–903. doi:10.29055/jccs/658. [CrossRef] [Google Scholar]

294. Divya B.J., Suman B., Venkataswamy M., Thyagaraju K. A study on phytochemicals, functional groups and mineral composition of Allium sativum (garlic) cloves. Int. J. Curr. Pharm. Res. 2017;9:42–45. doi:10.22159/ijcpr.2017.v9i3.18888. [CrossRef] [Google Scholar]

295. Shaaf S., Sharma R., Kilian B., Walther A., Özkan H., Karami E., Mohammadi B. Genetic structure and eco-geographical adaptation of garlic landraces (Allium sativum L.) in Iran. Genet. Resour. Crop. Evol. 2014;61:1565–1580. doi:10.1007/s10722-014-0131-4. [CrossRef] [Google Scholar]

296. Fratianni F., Ombra M.N., Cozzolino A., Riccardi R., Spigno P., Tremonte P., Coppola R., Nazzaro F. Phenolic constituents, antioxidant, antimicrobial and anti-proliferative activities of different endemic Italian varieties of garlic (Allium sativum L.) J. Funct. Foods. 2016;21:240–248. doi:10.1016/j.jff.2015.12.019. [CrossRef] [Google Scholar]

297. Khan M.S., Quershi N.A., Jabeen F., Asghar M.S., Shakeel M. Analysis of minerals profile, phenolic compounds and potential of Garlic (Allium sativum) as antioxidant scavenging the free radicals. Int. J. Biosci. 2016;8:72–82. [Google Scholar]

298. Onyeoziri U.P., Romanus E.N., Onyekachukwu U.I. Assessment of antioxidant capacities and phenolic contents of Nigerian cultivars of onions (Allium cepa L.) and garlic (Allium sativum L.) Pak. J. Pharm. Sci. 2016;29:1183–1188. [PubMed] [Google Scholar]

299. Khanum F., Anilakumar K.R., Viswanathan K.R. Anticarcinogenic properties of garlic: A review. Crit. Rev. Food Sci. Nutr. 2004;44:479–488. doi:10.1080/10408690490886700. [PubMed] [CrossRef] [Google Scholar]

300. Ghasemi K., Bolandnazar S., Tabatabaei S.J., Pirdashti H., Arzanlou M., Ebrahimzadeh M.A., Fathi H. Antioxidant properties of garlic as affected by selenium and humic acid treatments. New Zeal. J. Crop. Hort. 2015;43:173–181. doi:10.1080/01140671.2014.991743. [CrossRef] [Google Scholar]

301. Batcioglu K., Yilmaz Z., Satilmis B., Uyumlu A.B., Erkal H.S., Yucel N., Gunal S., Serin M., Demirtas H. Investigation of in vivo radioprotective and in vitro antioxidant and antimicrobial activity of garlic (Allium sativum) Eur. Rev. Med. Pharmacol. Sci. 2012;16:47–57. [PubMed] [Google Scholar]

302. Chung L.Y. The antioxidant properties of garlic compounds: Allyl cysteine, alliin, allicin, and allyl disulfide. J. Med. Food. 2006;9:205–213. doi:10.1089/jmf.2006.9.205. [PubMed] [CrossRef] [Google Scholar]

303. Chen S., Shen X., Cheng S., Li P., Du J., Chang Y., Meng H. Evaluation of garlic cultivars for polyphenolic content and antioxidant properties. PLoS ONE. 2013;8:79730. doi:10.1371/journal.pone.0079730. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

304. Benkeblia N. Free-radical scavenging capacity and antioxidant properties of some selected onions (Allium cepa L.) and garlic (Allium sativum L.) extracts. Braz. Arch. Biol. Technol. 2005;48:753–759. doi:10.1590/S1516-89132005000600011. [CrossRef] [Google Scholar]

305. Daliri E.B., Kim S.H., Park B.J., Kim H.S., Kim J.M., Kim H.S., Oh D.H. Effects of different processing methods on the antioxidant and immune stimulating abilities of garlic. Food Sci. Nutr. 2019;7:1222–1229. doi:10.1002/fsn3.942. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

306. Sadrefozalayi S., Aslanipour B., Alan M., Calan M. Determination and comparison of in vitro radical scavenging activity of both garlic oil and aqueous garlic extracts and their in vivo antioxidant effect on schistosomiasis disease in mice. Turk. J. Agric. Food Sci. Technol. (TURJAF) 2018;6:820–827. doi:10.24925/turjaf.v6i7.820-827.1647. [CrossRef] [Google Scholar]

307. Suleria H.A., Butt M.S., Khalid N., Sultan S., Raza A., Aleem M., Abbas M. Garlic (Allium sativum): Diet based therapy of 21st century–A review. Asian Pac. J. Trop Dis. 2015;5:271–278. doi:10.1016/S2222-1808(14)60782-9. [CrossRef] [Google Scholar]

308. Mandal S.K., Das A., Dey S., Sahoo U., Bose S., Bose A., Dhiman N., Madan S., Ramadan M.A. Bioactivities of Allicin and related organosulfur compounds from garlic: Overview of the literature since 2010. Egypt J. Chem. 2019;62:2–3. doi:10.21608/ejchem.2019.15787.1954. [CrossRef] [Google Scholar]

309. Rawat S. Evaluation of synergistic effect of Ginger, Garlic, Turmeric extracts on the antimicrobial activity of drugs against bacterial phatogens. Int. J. Biopharm. 2015;6:60–65. [Google Scholar]

310. Yadav S., Trivedi N.A., Bhatt J.D. Antimicrobial activity of fresh garlic juice: An in vitro study. Ayurveda. 2015;36:203. [PMC free article] [PubMed] [Google Scholar]

311. Ismail R.M., Saleh A.H., Ali K.S. GC-MS analysis and antibacterial activity of garlic extract with antibiotic. J. Med. Plants Stud. 2020;8:26–30. [Google Scholar]

312. Bakri I.M., Douglas C.W. Inhibitory effect of garlic extract on oral bacteria. Arch. Oral. Biol. 2005;50:645–651. doi:10.1016/j.archoralbio.2004.12.002. [PubMed] [CrossRef] [Google Scholar]

313. Kuzelov A., Andronikov D., Taskov N., Sofijanova E., Saneva D. Oxidative stability effect of basil, garlic and muscat blossom extracts on lipids and microbiology of minced meat. Cr. Acad. Bulg. Sci. 2017;70:1227–1236. [Google Scholar]

314. Gruhlke M., Nicco C., Batteux F., Slusarenko A. The effects of allicin, a reactive sulfur species from garlic, on a selection of mammalian cell lines. Antioxidants. 2017;6:1. doi:10.3390/antiox6010001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

315. Ge L., Xu Y., Jiang X., Xia W., Jiang Q. Broad-spectrum inhibition of proteolytic enzymes by allicin and application in mitigating textural deterioration of ice-stored grass carp (Ctenopharyngodon idella) fillets. Int. J. Food Sci. Tech. 2016;51:902–910. doi:10.1111/ijfs.13047. [CrossRef] [Google Scholar]

316. Mehrbod P., Amini E., Tavassoti-Kheiri M. Antiviral activity of garlic extract on influenza virus. Iran. J. Virol. 2009;3:19–23. doi:10.21859/isv.3.1.19. [CrossRef] [Google Scholar]

317. Kianbakht S., Jahaniani F. Evaluation of antibacterial activity of Tribulus terrestris L. growing in Iran. Iran. J. Pharmacol. Ther. 2003;2:22–24. [Google Scholar]

318. Gupta C., Garg A.P., Uniyal R.C., Kumari A. Comparative analysis of the antimicrobial activity of cinnamon oil and cinnamon extract on some food-borne microbes. Afr. J. Microbiol. Res. 2008;2:247–251. [Google Scholar]

319. Negi P.S., Jayaprakasha G.K., Rao L.J.M., Sakariah K.K. Antibacterial activity of turmeric oil: A byproduct from curcumin manufacture. J. Agric. Food Chem. 1999;47:4297–4300. doi:10.1021/jf990308d. [PubMed] [CrossRef] [Google Scholar]

320. Wang X., Shen Y., Thakur K., Han J., Zhang J.G., Hu F., Wei Z.J. Antibacterial activity and mechanism of ginger essential oil against Escherichia coli and Staphylococcus aureus. Molecules. 2020;25:3955. doi:10.3390/molecules25173955. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

321. Benameur Q., Gervasi T., Pellizzeri V., Pľuchtová M., Tali-Maama H., Assaous F., Guettou B., Rahal K., Gruľová D., Dugo G., et al. Antibacterial activity of Thymus vulgaris essential oil alone and in combination with cefotaxime against bla ESBL producing multidrug resistant Enterobacteriaceae isolates. Nat. Prod. Res. 2019;33:2647–2654. doi:10.1080/14786419.2018.1466124. [PubMed] [CrossRef] [Google Scholar]

322. Gheisari Z., Kalani L., Khaledi M., Nouri A., Eshaghi Milasi Y., Hossainy N., Soleymani A. Antibacterial Effects of Hydro-alcoholic Extract of Pennyroyal, Cinnamon and Rhubarb on Klebsiella pneumoniae and Staphylococcus aureus: An In vitro Study. J. Pharm. Res. Inter. 2019;17:1–6. doi:10.9734/jpri/2019/v28i630218. [CrossRef] [Google Scholar]

323. Diao W.R., Hu Q.P., Zhang H., Xu J.G. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.) Food Control. 2014;35:109–116. doi:10.1016/j.foodcont.2013.06.056. [CrossRef] [Google Scholar]

324. Alkuraishy H.M., Al-Gareeb A.I., Albuhadilly A.K., Alwindy S. In vitro assessment of the antibacterial activity of Matricaria chamomile alcoholic extract against pathogenic bacterial strains. Microbiol. Res. J. Int. 2015;7:55–61. doi:10.9734/BMRJ/2015/16263. [CrossRef] [Google Scholar]

325. Al-Sum B.A., Al-Arfaj A.A. Antimicrobial activity of the aqueous extract of mint plant. Sci. J. Clin. Med. 2013;2:110–113. doi:10.11648/j.sjcm.20130203.19. [CrossRef] [Google Scholar]

326. Akarca G., Tomar O. The Antibacterial effects of the different extracts of Oenothera biennis and Origanum minutiflorum O. Schwarz et. PH davis on food-borne pathogenic bacteria. Selcuk. J. Agric. Food Sci. 2020;34:78–83. [Google Scholar]

327. Gutierrez J., Barry-Ryan C., Bourke P. Antimicrobial activity of plant essential oils using food model media: Efficacy, synergistic potential and interactions with food components. Food Microbiol. 2009;26:142–150. doi:10.1016/j.fm.2008.10.008. [PubMed] [CrossRef] [Google Scholar]

328. Petropoulos S., Fernandes Â., Barros L., Ciric A., Sokovic M., Ferreira I.C. Antimicrobial and antioxidant properties of various Greek garlic genotypes. Food Chem. 2018;245:7–12. doi:10.1016/j.foodchem.2017.10.078. [PubMed] [CrossRef] [Google Scholar]

329. Chaieb K., Hajlaoui H., Zmantar T., Kahla-Nakbi A.B., Rouabhia M., Mahdouani K., Bakhrouf A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): A short review. Phytother. Res. 2007;21:501–506. doi:10.1002/ptr.2124. [PubMed] [CrossRef] [Google Scholar]

330. Li Y.H., Lai C.Y., Su M.C., Cheng J.C., Chang Y.S. Antiviral activity of Portulaca oleracea L. against influenza A viruses. J. Ethnopharmacol. 2019;241:112013. doi:10.1016/j.jep.2019.112013. [PubMed] [CrossRef] [Google Scholar]

331. Malik A., Mehmood M.D., Anwar H., Sultan U. In vivo antiviral potential of crude extracts derived from Tribulus terrestris against newcastle disease virus. J. Drug Deliv. Ther. 2018;8:149–154. doi:10.22270/jddt.v8i6.2114. [CrossRef] [Google Scholar]

332. Wang P., Su Z., Yuan W., Deng G., Li S. Phytochemical constituents and pharmacological activities of Eryngium L. (Apiaceae) Pharm. Crop. 2012;3:99–120. doi:10.2174/2210290601203010099. [CrossRef] [Google Scholar]

333. Lane T., Anantpadma M., Freundlich J.S., Davey R.A., Madrid P.B., Ekins S. The natural product eugenol is an inhibitor of the ebola virus in vitro. Pharm. Res. 2019;36:104. doi:10.1007/s11095-019-2629-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

334. Nisar T., Iqbal M., Raza A., Safdar M., Iftikhar F., Waheed M. Turmeric: A promising spice for phytochemical and antimicrobial activities. Am. Eur. J. Agric. Environ. Sci. 2015;15:1278–1288. [Google Scholar]

335. Goswami D., Kumar M., Ghosh S.K., Das A. Natural product compounds in alpinia officinarum and ginger are potent SARS-CoV-2 papain-like protease inhibitors. Chem. Rxiv. 2020 doi:10.26434/chemrxiv.12071997.v1. [CrossRef] [Google Scholar]

336. Walther C., Schmidtke M. Anti-rhinovirus and anti-influenza virus activities of mucoactive secretolytic agents and plant extracts—A comparative in vitro study. Res. Sq. 2020 doi:10.21203/rs.2.23461/v1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

337. Ben-Shabat S., Yarmolinsky L., Porat D., Dahan A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv. Transl. Res. 2019;10:354–367. doi:10.1007/s13346-019-00691-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

338. Badgujar S.B., Patel V.V., Bandivdekar A.H. Foeniculum vulgare Mill: A review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. BioMed Res. Int. 2014;2014:1–32. doi:10.1155/2014/842674. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

339. Sokolova A.S., Yarovaya O.I., sem*nova M.D., Shtro A.A., Orshanskaya I.R., Zarubaev V.V., Salakhutdinov N.F. Synthesis and in vitro study of novel borneol derivatives as potent inhibitors of the influenza A virus. MedChemComm. 2017;8:960–963. doi:10.1039/C6MD00657D. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

340. Wang S.X., Wang Y., Lu Y.B., Li J.Y., Song Y.J., Nyamgerelt M., Wang X.X. Diagnosis and treatment of novel coronavirus pneumonia based on the theory of traditional Chinese medicine. J. Integr. Med. 2020;18:275–283. doi:10.1016/j.joim.2020.04.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

341. Xu J., Zhang Y. Traditional Chinese Medicine treatment of COVID-19. Complement. Ther. Clin. Pract. 2020;39:101–165. doi:10.1016/j.ctcp.2020.101165. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

342. Sharma A.D. Eucalyptol (1, 8 cineole) from Eucalyptus essential oil a potential inhibitor of covid 19 corona virus infection by molecular docking studies. Preprints. 2020 doi:10.20944/preprints202003.0455.v1. [CrossRef] [Google Scholar]

343. Tamura S., Yang G.M., Koitabashi T., Matsuura Y., Komoda Y., Kawano T., Murakami N. Oenothein B, dimeric hydrolysable tannin inhibiting HCV invasion from Oenothera erythrosepala. J. Nat. Med. 2019;73:67–75. doi:10.1007/s11418-018-1239-1. [PubMed] [CrossRef] [Google Scholar]

344. Sampangi-Ramaiah M.H., Vishwakarma R., Shaanker R.U. Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Curr. Sci. 2020;118:1087–1092. [Google Scholar]

345. Tsai Y., Cole L.L., Davis L.E., Lockwood S.J., Simmons V., Wild G.C. Antiviral properties of garlic: In vitro effects on influenza B, herpes simplex and coxsackie viruses. Planta Med. 1985;51:460–461. doi:10.1055/s-2007-969553. [PubMed] [CrossRef] [Google Scholar]

346. Yamaguchi Y., Honma R., Yazaki T., Shibuya T., Sakaguchi T., Uto-Kondo H., Kumagai H. Sulfuric odor precursor S-allyl-L-cysteine sulfoxide in garlic induces detoxifying enzymes and prevents hepatic injury. Antioxidants. 2019;8:385. doi:10.3390/antiox8090385. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

347. Kicel A. An Overview of the Genus Cotoneaster (Rosaceae): Phytochemistry, Biological Activity, and Toxicology. Antioxidants. 2020;9:1002. doi:10.3390/antiox9101002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

348. Lee M.S., Chyau C.C., Wang C.P., Wang T.H., Chen J.H., Lin H.H. Flavonoids identification and pancreatic beta-cell protective effect of Lotus Seedpod. Antioxidants. 2020;9:658. doi:10.3390/antiox9080658. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

349. Kim Y.S., Kim J., Kim C.S., Lee I.S., Jo K., Jung D.H., Lee Y.M., Kim J.S. The herbal combination cpa4-1 inhibits changes in retinal capillaries and reduction of retinal occludin in db/db mice. Antioxidants. 2020;9:627. doi:10.3390/antiox9070627. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

350. Kim H.J., Kim D., Yoon H., Choi C.S., Oh Y.S., Jun H.S. Prevention of Oxidative Stress-Induced Pancreatic Beta Cell Damage by Broussonetia kazinoki Siebold Fruit Extract via the ERK-Nox4 Pathway. Antioxidants. 2020;9:406. doi:10.3390/antiox9050406. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

351. Mussard E., Jousselin S., Cesaro A., Legrain B., Lespessailles E., Esteve E., Berteina-Raboin S., Toumi H. Andrographis paniculata and its bioactive diterpenoids against inflammation and oxidative stress in keratinocytes. Antioxidants. 2020;9:530. doi:10.3390/antiox9060530. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

352. Tanaka Y., Ito T., Tsuji G., Furue M. Baicalein inhibits benzo [a] pyrene-induced toxic response by downregulating src phosphorylation and by upregulating NRF2-HMOX1 system. Antioxidants. 2020;9:507. doi:10.3390/antiox9060507. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

353. Spiegel M., Andruniów T., Sroka Z. Flavones’ and flavonols’ antiradical structure–activity relationship—A quantum chemical study. Antioxidants. 2020;9:461. doi:10.3390/antiox9060461. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

354. Liou C.J., Chen Y.L., Yu M.C., Yeh K.W., Shen S.C., Huang W.C. Sesamol alleviates airway hyperresponsiveness and oxidative stress in asthmatic mice. Antioxidants. 2020;9:295. doi:10.3390/antiox9040295. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

355. Chen C.C., Li H.Y., Leu Y.L., Chen Y.J., Wang C.J., Wang S.H. Corylin inhibits vascular cell inflammation, proliferation and migration and reduces atherosclerosis in apoe-deficient mice. Antioxidants. 2020;9:275. doi:10.3390/antiox9040275. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

356. Li X., Zeng J., Liu Y., Liang M., Liu Q., Li Z., Zhao X., Chen D. Inhibitory effect and mechanism of action of quercetin and quercetin diels-alder anti-dimer on erastin-induced ferroptosis in bone marrow-derived mesenchymal stem cells. Antioxidants. 2020;9:205. doi:10.3390/antiox9030205. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

357. Bacchetti T., Morresi C., Bellachioma L., Ferretti G. Antioxidant and pro-oxidant properties of carthamus tinctorius, hydroxy safflor yellow A, and safflor yellow A. Antioxidants. 2020;9:119. doi:10.3390/antiox9020119. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

358. Jung T.Y., Lee A.Y., Song J.H., Lee M.Y., Lim J.O., Lee S.J., Ko J.W., Shin N.R., Kim J.C., Shin I.S., et al. Scrophularia koraiensis nakai attenuates allergic airway inflammation via suppression of NF-κB and enhancement of Nrf2/HO−1 signaling. Antioxidants. 2020;9:99. doi:10.3390/antiox9020099. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

359. Iciek M., Bilska-Wilkosz A., Górny M., Sokołowska-Jeżewicz M., Kowalczyk-Pachel D. The effects of different garlic-derived allyl sulfides on anaerobic sulfur metabolism in the mouse kidney. Antioxidants. 2016;5:46. doi:10.3390/antiox5040046. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

360. Junsi M., Takahashi Yupanqui C., Usawakesmanee W., Slusarenko A., Siripongvutikorn S. Thunbergia laurifolia leaf extract increased levels of antioxidant enzymes and protected human cell-lines in vitro against cadmium. Antioxidants. 2020;9:47. doi:10.3390/antiox9010047. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

361. Taghouti M., Martins-Gomes C., Schäfer J., Santos J.A., Bunzel M., Nunes F.M., Silva A.M. Chemical characterization and bioactivity of extracts from Thymus mastichina: A Thymus with a distinct salvianolic acid composition. Antioxidants. 2020;9:34. doi:10.3390/antiox9010034. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

362. Sidor A., Drożdżyńska A., Brzozowska A., Szwengiel A., Gramza-Michałowska A. The effect of plant additives on the stability of polyphenols in cloudy and clarified juices from Black Chokeberry (Aronia melanocarpa) Antioxidants. 2020;9:801. doi:10.3390/antiox9090801. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

363. Majdi C., Pereira C., Dias M.I., Calhelha R.C., Alves M.J., Rhourri-Frih B., Charrouf Z., Barros L., Amaral J.S., Ferreira I.C. Phytochemical characterization and bioactive properties of Cinnamon Basil (Ocimum basilicum cv.‘Cinnamon’) and Lemon Basil (Ocimum× citriodorum) Antioxidants. 2020;9:369. doi:10.3390/antiox9050369. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

364. Horn T., Bettray W., Noll U., Krauskopf F., Huang M.R., Bolm C., Slusarenko A.J., Gruhlke M.C. The sulfilimine analogue of allicin, s-allyl-s-(s-allyl)-n-cyanosulfilimine, is antimicrobial and reacts with glutathione. Antioxidants. 2020;9:1086. doi:10.3390/antiox9111086. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

365. Ansary J., Forbes-Hernández T.Y., Gil E., Cianciosi D., Zhang J., Elexpuru-Zabaleta M., Simal-Gandara J., Giampieri F., Battino M. Potential health benefit of garlic based on human intervention studies: A brief overview. Antioxidants. 2020;9:619. doi:10.3390/antiox9070619. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

366. Bussmann R.W., Malca-García G., Glenn A., Sharon D., Chait G., Díaz D., Pourmand K., Jonat B., Somogy S., Guardado G., et al. Minimum inhibitory concentrations of medicinal plants used in Northern Peru as antibacterial remedies. J. Ethnopharmacol. 2010;132:101–108. doi:10.1016/j.jep.2010.07.048. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

367. Marino M., Bersani C., Comi G. Antimicrobial activity of the essential oils of Thymus vulgaris L. measured using a bioimpedometric method. J. Food Prot. 1999;62:1017–1023. doi:10.4315/0362-028X-62.9.1017. [PubMed] [CrossRef] [Google Scholar]

368. Bakhsheshi-Rad H.R., Chen X., Ismail A.F., Aziz M., Abdolahi E., Mahmoodiyan F. Improved antibacterial properties of an Mg-Zn-Ca alloy coated with chitosan nanofibers incorporating silver sulfadiazine multiwall carbon nanotubes for bone implants. Polym. Adv. Technol. 2019;30:1333–1339. doi:10.1002/pat.4563. [CrossRef] [Google Scholar]

369. Hadisi Z., Bakhsheshi-Rad H.R., Walsh T., Dehghan M.M., Farzad-Mohajeri S., Gholami H., Diyanoush A., Pagan E., Akbari M. In vitro and in vivo evaluation of silk fibroin-hardystonite-gentamicin nanofibrous scaffold for tissue engineering applications. Polym. Test. 2020;91:106698. doi:10.1016/j.polymertesting.2020.106698. [CrossRef] [Google Scholar]

370. Bakhsheshi-Rad H.R., Ismail A.F., Aziz M., Akbari M., Hadisi Z., Omidi M., Chen X. Development of the PVA/CS nanofibers containing silk protein sericin as a wound dressing: In vitro and in vivo assessment. Int. J. Biol. Macromol. 2020;149:513–521. doi:10.1016/j.ijbiomac.2020.01.139. [PubMed] [CrossRef] [Google Scholar]

371. Hadisi Z., Farokhi M., Bakhsheshi-Rad H.R., Jahanshahi M., Hasanpour S., Pagan E., Dolatshahi-Pirouz A., Zhang Y.S., Kundu S.C., Akbari M. Hyaluronic Acid (HA)-based Silk Fibroin/Zinc oxide core–shell electrospun dressing for burn wound management. Macromol. Biosci. 2020;19:1900328. doi:10.1002/mabi.201900328. [PubMed] [CrossRef] [Google Scholar]

372. Bakhsheshi-Rad H.R., Akbari M., Ismail A.F., Aziz M., Hadisi Z., Pagan E., Daroonparvar M., Chen X. Coating biodegradable magnesium alloys with electrospun poly-L-lactic acid-akermanite-doxycycline nanofibers for enhanced biocompatibility, antibacterial activity, and corrosion resistance. Surf. Coat. Technol. 2019;377:124898. doi:10.1016/j.surfcoat.2019.124898. [CrossRef] [Google Scholar]

373. Bakhsheshi-Rad H.R., Ismail A.F., Aziz M., Hadisi Z., Omidi M., Chen X. Antibacterial activity and corrosion resistance of Ta2O5 thin film and electrospun PCL/MgO-Ag nanofiber coatings on biodegradable Mg alloy implants. Ceram. Int. 2019;45:11883–11892. doi:10.1016/j.ceramint.2019.03.071. [CrossRef] [Google Scholar]

374. Bakhsheshi-Rad H.R., Hadisi Z., Hamzah E., Ismail A.F., Aziz M., Kashefian M. Drug delivery and cytocompatibility of ciprofloxacin loaded gelatin nanofibers-coated Mg alloy. Mater. Lett. 2017;207:179. doi:10.1016/j.matlet.2017.07.072. [CrossRef] [Google Scholar]

375. Bakhsheshi-Rad H.R., Ismail A.F., Aziz M., Akbari M., Hadisi Z., Daroonparvar M., Chen X.B. Antibacterial activity and in vivo wound healing evaluation of polycaprolactone-gelatin methacryloyl-cephalexin electrospun nanofibrous. Mater. Lett. 2019;256:126618. doi:10.1016/j.matlet.2019.126618. [CrossRef] [Google Scholar]

376. Bakhsheshi-Rad H.R., Hadisi Z., Ismail A.F., Aziz M., Akbari M., Berto F., Chen X.B. In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance. Polym. Test. 2020;82:106298. doi:10.1016/j.polymertesting.2019.106298. [CrossRef] [Google Scholar]

377. Percival S.S., Vanden Heuvel J.P., Nieves C.J., Montero C., Migliaccio A.J., Meadors J. Bioavailability of herbs and spices in humans as determined by ex vivo inflammatory suppression and DNA strand breaks. J. Am. Coll. Nutr. 2012;31:288–294. doi:10.1080/07315724.2012.10720438. [PubMed] [CrossRef] [Google Scholar]

378. Bhattaram V.A., Graefe U., Kohlert C., Veit M., Derendorf H. Pharmaco*kinetics and bioavailability of herbal medicinal products. Phytomedicine. 2002;9:1–33. doi:10.1078/1433-187X-00210. [PubMed] [CrossRef] [Google Scholar]

379. Kohlert C., Schindler G., März R.W., Abel G., Brinkhaus B., Derendorf H., Gräfe E.U., Veit M. Systemic availability and pharmaco*kinetics of thymol in humans. J. Clin. Pharmacol. 2002;42:731–737. doi:10.1177/009127002401102678. [PubMed] [CrossRef] [Google Scholar]

380. Brunner M., Davies D., Martin W., Leuratti C., Lackner E., Müller M. A new topical formulation enhances relative diclofenac bioavailability in healthy male subjects. Br. J. Clin. Pharmacol. 2011;71:852. doi:10.1111/j.1365-2125.2011.03914.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

381. Anand P., Kunnumakkara A.B., Newman R.A., Aggarwal B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007;4:807–818. doi:10.1021/mp700113r. [PubMed] [CrossRef] [Google Scholar]

382. Rahman M.S. Allicin and other functional active components in garlic: Health benefits and bioavailability. Int. J. Food Prop. 2007;10:245–268. doi:10.1080/10942910601113327. [CrossRef] [Google Scholar]

Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials (2024)

FAQs

What are the antioxidant properties of herbal plants? ›

These natural antioxidants from plant materials are mainly polyphenols (phenolic acids, flavonoids, anthocyanins, lignans and stilbenes), carotenoids (xanthophylls and carotenes) and vitamins (vitamin E and C) [6,20].

What are examples of antioxidants in herbal drug technology? ›

Turmeric. Turmeric (Curcuma longa) is one of the herbal medicines used traditionally. It belongs to the Zingiberaceae family. Due to the existence of curcumin (a polyphenolic compound), the extracts of turmeric have shown antimicrobial and antioxidant activity.

What are antioxidants and antimicrobials? ›

Antioxidants are compounds able to neutralize free radicals, they often are phenolic compounds. Antimicrobial agents are interfering with the microbes and inhibit some of their primary function or destroy their cell wall.

What is the strongest antimicrobial herb? ›

Japanese honeysuckle flowers are powerfully antimicrobial and are one of the most widely used medicinal herbs in the world. Honeysuckle can be used internally as a tea or tincture and externally as a poultice or wash. The floral buds and opened blooms are immune stimulating, and strongly antibacterial and antiviral.

What is the most powerful antioxidant herb? ›

High-Antioxidant Herbs

Look for 100 percent pure (therapeutic grade) oils, which are highest in antioxidants: Clove: 314,446 ORAC score. Cinnamon: 267,537 ORAC score. Oregano: 159,277 ORAC score.

What is the most powerful antioxidant plant? ›

Broccoli, spinach, carrots and potatoes are all high in antioxidants, and so are artichokes, cabbage, asparagus, avocados, beetroot, radish, lettuce, sweet potatoes, squash, pumpkin, collard greens and kale. Using lots of spices in cooking is good.

Which vitamin is the most important natural antioxidant? ›

Vitamin C. One of the best-known antioxidants is vitamin C. This vitamin offers a wide range of health benefits including protecting the body from free radical cell damage, supporting your immune system, helping to produce collagen and assisting the body in iron absorption.

What are the 4 major antioxidants? ›

These include the nutrient antioxidants, vitamins A, C and E, and the minerals copper, zinc and selenium. Other dietary food compounds, such as the phytochemicals in plants, are believed to have greater antioxidant effects than vitamins or minerals.

What is a commonly used natural antioxidant in herbal cosmetics? ›

Cosmetic Nanoformulation Containing Natural Antioxidants
PlantActive CompoundSystem
Hibiscus sabdariffaPolyphenolic compoundsLiposome
Curcuma longaPhenolic compounds (curcumin)Liposome, ethosome, transferosome
Fraxinus angustifoliaPhenolic compoundsEthosome
Aloe veraPhenolic compoundsLiposomes
9 more rows

What is the strongest natural antibiotic for humans? ›

Seven best natural antibiotics
  1. Garlic. Cultures across the world have long recognized garlic for its preventive and curative powers. ...
  2. Honey. Since ancient times, people have used honey due to its wound-healing activity and antimicrobial properties. ...
  3. Ginger. ...
  4. Echinacea. ...
  5. Goldenseal. ...
  6. Clove. ...
  7. Oregano.
Nov 14, 2023

What fruit kills bacteria inside the body? ›

Lemon The anti-bacterial and ant-fungal properties of lemon enable it to fight bacteria that cause acne. It is full of Vitamin C, which also acts as an antioxidant that fights disease-causing free radicals in the body.

What fruit is a natural antibiotic? ›

Pineapples – Our favorite tropical fruit contains the enzyme bromelain, which has a healing antibiotic effect when ingested. Move over cranberries, pineapples also help fight infections. They are used to relieve inflammation, ulcerative colitis, and to improve the health of your urinary tract.

What is the strongest natural antiviral? ›

Garlic (Allium sativum L.) possess a powerful antiviral agent whose every day consumption can be a great way to improve one's immune system (Rouf et al., 2020). It is found to have high levels of organosulfur compounds like quercetin and allicin which are associated with inhibition of viral infection (Wu et al., 2016).

What herb kills bacteria in the body? ›

Help to fight infections naturally with these five herbal antimicrobials.
  • Echinacea. First used by Native Americans as treatment for snakebites, colic, wounds and infections, echinacea has been used for a variety of infections for hundreds of years. ...
  • Manuka. ...
  • Thyme. ...
  • Olive Leaf. ...
  • Astragalus.
Apr 17, 2023

What herb draws out infection? ›

Externally- Marshmallow is also useful in helping draw out infection while softening skin and soft tissue around an infection and sooth inflammation.

What are the antioxidant properties? ›

According to one study : “Antioxidants act as radical scavenger, hydrogen donor, electron donor, peroxide decomposer, singlet oxygen quencher, enzyme inhibitor, synergist, and metal-chelating agents.”

What makes a plant antioxidant? ›

There are several plant constituents that protect the cells from damage caused by free radicals. Plants with medicinal importance and antioxidants properties mainly have phenols and flavonoids as their main constituents.

What are the actions of antioxidants in herbs? ›

Antioxidant activities prove that the antioxidants in spices and herbs are potent in inhibiting lipid oxidation. Spices and herbs have proven efficacy in retarding lipid oxidation and prolonging shelf life of food products.

What are examples of antioxidants from plants? ›

Some plant extracts used as antioxidants, such as from grape seeds, green tea, pine bark, rosemary, pomegranates and cinnamon, have also exhibited similar or better properties compared to synthetic antioxidants [53].

Top Articles
Latest Posts
Article information

Author: Dan Stracke

Last Updated:

Views: 6028

Rating: 4.2 / 5 (43 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Dan Stracke

Birthday: 1992-08-25

Address: 2253 Brown Springs, East Alla, OH 38634-0309

Phone: +398735162064

Job: Investor Government Associate

Hobby: Shopping, LARPing, Scrapbooking, Surfing, Slacklining, Dance, Glassblowing

Introduction: My name is Dan Stracke, I am a homely, gleaming, glamorous, inquisitive, homely, gorgeous, light person who loves writing and wants to share my knowledge and understanding with you.